7 research outputs found

    Superoxide dismutase mutations of familial amyotrophic lateral sclerosis and the oxidative inactivation of calcineurin

    Get PDF
    AbstractApproximately 10% of all familial cases of amyotrophic lateral sclerosis (fALS) are linked to mutations in the SOD1 gene, which encodes the copper/zinc superoxide dismutase (CuZnSOD). Recently, wild-type CuZnSOD was shown to protect calcineurin, a calcium/calmodulin-regulated phosphoprotein phosphatase, from inactivation by reactive oxygen species. We asked whether the protective effect of CuZnSOD on calcineurin is affected by mutations associated with fALS. For this, we monitored calcineurin activity in the presence of mutant and wild-type SOD. We found that the degree of protection against inactivation of calcineurin by different SOD mutants correlates with the severity of the phenotype associated with the different mutations, suggesting a potential role for calcineurin–SOD1 interaction in the etiology of fALS

    Effects of Pulse Phase Duration and Location of Stimulation Within the Inferior Colliculus on Auditory Cortical Evoked Potentials in a Guinea Pig Model

    No full text
    The auditory midbrain implant (AMI), which consists of a single shank array designed for stimulation within the central nucleus of the inferior colliculus (ICC), has been developed for deaf patients who cannot benefit from a cochlear implant. Currently, performance levels in clinical trials for the AMI are far from those achieved by the cochlear implant and vary dramatically across patients, in part due to stimulation location effects. As an initial step towards improving the AMI, we investigated how stimulation of different regions along the isofrequency domain of the ICC as well as varying pulse phase durations and levels affected auditory cortical activity in anesthetized guinea pigs. This study was motivated by the need to determine in which region to implant the single shank array within a three-dimensional ICC structure and what stimulus parameters to use in patients. Our findings indicate that complex and unfavorable cortical activation properties are elicited by stimulation of caudal–dorsal ICC regions with the AMI array. Our results also confirm the existence of different functional regions along the isofrequency domain of the ICC (i.e., a caudal–dorsal and a rostral–ventral region), which has been traditionally unclassified. Based on our study as well as previous animal and human AMI findings, we may need to deliver more complex stimuli than currently used in the AMI patients to effectively activate the caudal ICC or ensure that the single shank AMI is only implanted into a rostral–ventral ICC region in future patients
    corecore