901 research outputs found
Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland
The melanocortin-2-receptor (MC2R)/MC2R accessory protein (MRAP) complex is critical to the production of glucocorticoids from the adrenal cortex. Inactivating mutations in either MC2R or MRAP result in the clinical condition familial glucocorticoid deficiency. The localisation of MC2R together with MRAP within the adrenal gland has not previously been reported. Furthermore, MRAP2, a paralogue of MRAP, has been shown in vitro to have a similar function to MRAP, facilitating MC2R trafficking and responsiveness to ACTH. Despite similar MC2R accessory functions, in vivo, patients with inactivating mutations of MRAP fail to be rescued by a functioning MRAP2 gene, suggesting differences in adrenal expression, localisation and/or function between the two MRAPs. In this study on the rat adrenal gland, we demonstrate that while MRAP and MC2R are highly expressed in the zona fasciculata, MRAP2 is expressed throughout the adrenal cortex in low quantities. In the developing adrenal gland, both MRAP and MRAP2 are equally well expressed. The MC2R/MRAP2 complex requires much higher concentrations of ACTH to activate compared with the MC2R/MRAP complex. Interestingly, expression of MC2R and MRAP in the undifferentiated zone would support the notion that ACTH may play an important role in adrenal cell differentiation and maintenance
Amplitude and phase representation of quantum invariants for the time dependent harmonic oscillator
The correspondence between classical and quantum invariants is established.
The Ermakov Lewis quantum invariant of the time dependent harmonic oscillator
is translated from the coordinate and momentum operators into amplitude and
phase operators. In doing so, Turski's phase operator as well as
Susskind-Glogower operators are generalized to the time dependent harmonic
oscillator case. A quantum derivation of the Manley-Rowe relations is shown as
an example
ACTH signalling and adrenal development: lessons from mouse models
The melanocortin-2-receptor (MC2R), also known as the ACTH receptor, is a critical component of the hypothalamic–pituitary–adrenal axis. The importance of MC2R in adrenal physiology is exemplified by the condition familial glucocorticoid deficiency (FGD), a potentially fatal disease characterised by isolated cortisol deficiency. MC2R mutations cause ~25% of cases. The discovery of a MC2R accessory protein MRAP, mutations of which account for ~20% of FGD, has provided insight into MC2R trafficking and signalling. MRAP is a single transmembrane domain accessory protein highly expressed in the adrenal gland and essential for MC2R expression and function. Mouse models helped elucidate the action of ACTH. The Mc2r-knockout (Mc2r−/−) mice was the first mouse model developed to have adrenal insufficiency with deficiencies in glucocorticoid, mineralocorticoid and catecholamines. We recently reported the generation of the Mrap−/− mice which better mimics the human FGD phenotype with isolated glucocorticoid deficiency alone. The adrenal glands of adult Mrap−/− mice were grossly dysmorphic with a thickened capsule, deranged zonation and deranged WNT4/beta-catenin and sonic hedgehog (SHH) pathway signalling. Collectively, these mouse models of FGD highlight the importance of ACTH and MRAP in adrenal progenitor cell regulation, cortex maintenance and zonation
MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation
Melanocortin 2 receptor accessory protein (MRAP) is a single transmembrane domain accessory protein and a critical component of the hypothamo-pituitary-adrenal axis. MRAP is highly expressed in the adrenal gland and is essential for adrenocorticotropin hormone (ACTH) receptor expression and function. Human loss-of-function mutations in MRAP cause familial glucocorticoid (GC) deficiency (FGD) type 2 (FGD2), whereby the adrenal gland fails to respond to ACTH and to produce cortisol. In this study, we generated Mrap-null mice to study the function of MRAP in vivo. We found that the vast majority of Mrap−/− mice died at birth but could be rescued by administration of corticosterone to pregnant dams. Surviving Mrap−/− mice developed isolated GC deficiency with normal mineralocorticoid and catecholamine production, recapitulating FGD2. The adrenal glands of adult Mrap−/− mice were small, with grossly impaired adrenal capsular morphology and cortex zonation. Progenitor cell differentiation was significantly impaired, with dysregulation of WNT4/β-catenin and sonic hedgehog pathways. These data demonstrate the roles of MRAP in both steroidogenesis and the regulation of adrenal cortex zonation. This is the first mouse model of isolated GC deficiency and reveals the role of MRAP in adrenal progenitor cell regulation and cortex zonatio
ERG conductance expression modulates the excitability of ventral horn GABAergic interneurons that control rhythmic oscillations in the developing mouse spinal cord
During antenatal development, the operation and maturation of mammalian spinal networks strongly depend on the activity of ventral horn GABAergic interneurons that mediate excitation first and inhibition later. Although the functional consequence of GABA actions may depend on maturational processes in target neurons, it is also likely that evolving changes in GABAergic transmission require fine-tuning in GABA release, probably via certain intrinsic mechanisms regulating GABAergic neuron excitability at different embryonic stages. Nevertheless, it has not been possible, to date, to identify certain ionic conductances upregulated or downregulated before birth in such cells. By using an experimental model with either mouse organotypic spinal cultures or isolated spinal cord preparations, the present study examined the role of the ERG current (IK(ERG) ), a potassium conductance expressed by developing, GABA-immunoreactive
spinal neurons. In organotypic cultures, only ventral interneurons with fast adaptation and GABA immunoreactivity, and only after 1 week in culture, were transformed into high-frequency bursters by E4031, a selective inhibitor of IK(ERG) that also prolonged and made more regular spontaneous bursts. In the isolated spinal cord in which GABA immunoreactivity and m-erg mRNA were colocalized in interneurons, ventral root rhythms evoked by NMDA plus 5-hydroxytryptamine were stabilized and synchronized by E4031. All of these effects were lost after 2 weeks in culture or before birth in coincidence with decreased m-erg expression. These data suggest that, during an early stage of spinal cord development, the excitability of GABAergic ventral interneurons important for circuit maturation depended, at least in part, on the function of IK(ERG)
The crosstalk between FGF21 and GH leads to weakened GH receptor signaling and IGF1 expression and is associated with growth failure in very preterm infants.
BACKGROUND: Fibroblast growth factor 21 (FGF21) is an essential metabolic regulator that adapts to changes in nutritional status. Severe childhood undernutrition induces elevated FGF21 levels, contributing to growth hormone (GH) resistance and subsequent linear growth attenuation potentially through a direct action on chondrocytes. METHODS: In this study, we assessed expression of the components of both GH and FGF21 pathways in rare and unique human growth plates obtained from children. Moreover, we investigated the mechanistic interplay of FGF21 on GH receptor (GHR) signaling in a heterologous system. RESULTS: Chronic FGF21 exposure increased GH-induced GHR turnover and SOCS2 expression, leading to the inhibition of STAT5 phosphorylation and IGF-1 expression. The clinical significance of FGF21 signaling through GH receptors was tested in nutritionally driven growth failure seen in very preterm (VPT) infants right after birth. VPT infants display an immediate linear growth failure after birth followed by growth catch-up. Consistent with the in vitro model data, we show that circulating FGF21 levels were elevated during deflection in linear growth compared to catch-up growth and were inversely correlated with the length velocity and circulating IGF1 levels. CONCLUSIONS: This study further supports a central role of FGF21 in GH resistance and linear growth failure and suggests a direct action on the growth plate
Statins, fibrates, and venous thromboembolism: a meta-analysis.
Aims The aim is to make a systematic review of the literature to assess the effect of lipid-lowering drugs on venous thromboembolism (VTE) occurrence.
Methods and results MEDLINE and EMBASE databases were searched to identify studies that evaluated the effect of lipid-lowering drugs, in particular statins and fibrates, on VTE risk until April 2009. A scoring system was used to divide studies into two quality categories. Odds ratios (ORs) and 95% confidence intervals (CIs) were then calculated and pooled using a fixed and a random-effects model. Statistical heterogeneity was evaluated through the use of I2 statistics. Three randomized controlled trials (RCTs), three cohort, and eight case\u2013control studies were included in our systematic review, for a total of 863 805 patients. Statins use significantly reduced VTE risk [OR, 0.81; 95% CI, 0.66\u20130.99, random-effect model)]. There was a very high heterogeneity among the studies (I2 > 80%). The use of fibrates was associated with a significant increase in the risk of VTE (OR, 1.58; 95% CI, 1.23\u20132.02), without heterogeneity (I2 = 0%). Data on other lipid-lowering drugs were lacking.
Conclusion This meta-analysis of available literature suggests that statins may lower the risk of VTE, whereas fibrates may increase this risk. Due to several methodological limitations, this conclusion should be considered with caution, and additional, specifically designed RCTs are warranted
MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation.
Melanocortin 2 receptor accessory protein (MRAP) is a single transmembrane domain accessory protein and a critical component of the hypothamo-pituitary-adrenal axis. MRAP is highly expressed in the adrenal gland and is essential for adrenocorticotropin hormone (ACTH) receptor expression and function. Human loss-of-function mutations in MRAP cause familial glucocorticoid (GC) deficiency (FGD) type 2 (FGD2), whereby the adrenal gland fails to respond to ACTH and to produce cortisol. In this study, we generated Mrap-null mice to study the function of MRAP in vivo. We found that the vast majority of Mrap-/- mice died at birth but could be rescued by administration of corticosterone to pregnant dams. Surviving Mrap-/- mice developed isolated GC deficiency with normal mineralocorticoid and catecholamine production, recapitulating FGD2. The adrenal glands of adult Mrap-/- mice were small, with grossly impaired adrenal capsular morphology and cortex zonation. Progenitor cell differentiation was significantly impaired, with dysregulation of WNT4/β-catenin and sonic hedgehog pathways. These data demonstrate the roles of MRAP in both steroidogenesis and the regulation of adrenal cortex zonation. This is the first mouse model of isolated GC deficiency and reveals the role of MRAP in adrenal progenitor cell regulation and cortex zonation.-Novoselova, T. V., Hussain, M., King, P. J., Guasti, L., Metherell, L. A., Charalambous, M., Clark, A. J. L., Chan, L. F. MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation
The Formal Dynamism of Categories: Stops vs. Fricatives, Primitivity vs. Simplicity
Minimalist Phonology (MP; Pöchtrager 2006) constructs its theory based on the phonological epistemological principle (Kaye 2001) and exposes the arbitrary nature of standard Government Phonology (sGP) and strict-CV (sCV), particularly with reference to their confusion of melody and structure.
For Pöchtrager, these are crucially different, concluding that place of articulation is melodic (expressed with elements), while manner of articulation is structural. In this model, the heads (xN and xO) can license and incorporate the length of the other into their own interpretation, that is xN influences xO projections as well as its own and vice versa. This dynamism is an aspect of the whole framework and this paper in particular will show that stops and fricatives evidence a plasticity of category and that, although fricatives are simpler in structure, stops are the more primitive of the two.
This will be achieved phonologically through simply unifying the environment of application of the licensing forces within Pöchtrager's otherwise sound onset structure. In doing so, we automatically make several predictions about language acquisition and typology and show how lenition in Qiang (Sino-Tibetan) can be more elegantly explained
Plasticity of human adipose-derived stem cells - relevance to tissue repair.
In contrast to cold blooded vertebrates, the ability to regenerate morphologically and functionally complex structures is limited in adult mammals. Recruitment of progenitor cells is a key step in the regenerative process. The possibility of repairing missing or diseased tissues in humans has been potentiated by the increasing understanding of somatic stem cells, their plasticity and the possibility of modulating it, that could be harnessed either to stimulate endogenous repair or to engineer the required tissue. Here, we focus on human mesenchymal stem cells (MSCs), important players in tissue homeostasis in healthy organisms, with a particular emphasis on those derived from the adipose tissue (ADSCs). While a mark of MSC identity is the ability to differentiate into osteoblasts, chondrocytes and adipocytes, there is evidence that their potential goes beyond these three mesenchymal lineages. We discuss some differentiation and modulatory properties of MSCs and provide an overview of our recent work on ADSCs from paediatric patients (pADSCs) that has shown their ability to give raise to non-mesenchymal cells, consistent with a significant plasticity. Finally, we present novel data indicating that both mesenchymal lineages (adipogenic, chondrogenic and osteogenic) and neural and epithelial lineages can originate from clonal lines that like the parental line express markers of pluripotency as well as the stromal cell marker, GREM1. Together these data support the existence of pADSC multipotent stem cells.Newlife Foundation, NIHR GOSH BRC,
MRC and BBSRC
- …