10 research outputs found
Tris(pyrazolyl)methanide Complexes of Trivalent Rare-Earth Metals
Three
types of trivalent rare-earth-metal complexes supported by
a monoanionic trisÂ(pyrazolyl)Âmethanide ligand were synthesized and
structurally characterized, and the catalytic activity of the dialkyl
derivatives for isoprene polymerization was investigated. Reactions
of the lithium salt of trisÂ(3,5-dimethylpyrazolyl)Âmethanide <b>L</b>LiÂ(THF) with 1 equiv of ScCl<sub>3</sub>(THF)<sub>3</sub>, YCl<sub>3</sub>, or LuCl<sub>3</sub> in THF provided the ion-pair
complexes [<b>L</b>LnCl<sub>3</sub>]Â[LiÂ(THF)<sub>4</sub>] (Ln
= Sc (<b>1</b>), Y (<b>2</b>), Lu (<b>3</b>)). Dialkyl
complexes <b>L</b>LnÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF) (Ln = Y (<b>4</b>), Lu (<b>5</b>)) were prepared
by salt metathesis of <b>L</b>LiÂ(THF) with 1 equiv of [YÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF)<sub>3</sub>]Â[BPh<sub>4</sub>] or [LuÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF)<sub>3</sub>]Â[BPh<sub>4</sub>]
in toluene. Reaction of <b>5</b> with PhSiH<sub>3</sub> provided
the unexpected alkylidene-bridged dinuclear complex <b>L</b><sub>2</sub>Lu<sub>2</sub>(μ-η<sup>1</sup>:η<sup>1</sup>-3,5-(CH<sub>3</sub>)ÂC<sub>3</sub>HN<sub>2</sub>)<sub>2</sub>(μ-CHSiMe<sub>3</sub>) (<b>6</b>). Complexes <b>1</b>–<b>6</b> were structurally characterized by single-crystal
X-ray diffraction, showing that the trisÂ(pyrazolyl)Âmethanide ligand
acts as a κ<sup>3</sup>-coordinating six-electron donor in all
complexes. The dialkyl complexes catalyzed 1,4-cis polymerization
of isoprene with high selectivity upon activation with borate and
alkylaluminum
CNC-Pincer Rare-Earth Metal Amido Complexes with a Diarylamido Linked Biscarbene Ligand: Synthesis, Characterization, and Catalytic Activity
In
preparation of CNC-pincer rare-earth metal amido complexes with
a diarylamido linked biscarbene ligand, it is found that conditions
have a key influence on final products. Reaction of a THF suspension
of bisÂ[2-(3-benzylÂimidazolium)-4-methylÂphenyl]Âamine
dichlorides (H<sub>3</sub><b>L</b>Cl<sub>2</sub>) with [(Me<sub>3</sub>Si)<sub>2</sub>ÂN]<sub>3</sub>ÂREÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub> (RE = Yb, Eu, Sm) in THF at room temperature afforded the
only unexpected fused-heterocyclic compound 8,9-dibenzyl-3,14-dimethyl-8<i>a</i>,9-dihydro-8<i>H</i>-benzoÂ[4,5]ÂimidazoÂ[2′,1′:2,3]ÂimidazoÂ[1,2-<i>a</i>]ÂimidazoÂ[2,1-<i>c</i>]Âquinoxaline
(<b>1</b>) containing an imidazolyl ring and a piperidyl ring,
which formed through carbene C–C and C–N coupling. However,
the reaction of H<sub>3</sub><b>L</b>Cl<sub>2</sub> with [(Me<sub>3</sub>Si)<sub>2</sub>ÂN]<sub>3</sub>ÂErÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub> in toluene afforded the CNC-pincer erbium amido complex incorporating
a diarylamido linked biscarbene ligand <b>L</b>ErÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>2</b>) in low yield and
the above fused-heterocyclic compound <b>1</b>. The stepwise
reaction of H<sub>3</sub><b>L</b>Cl<sub>2</sub> with strong
bases (<i>n</i>-BuLi or LiCH<sub>2</sub>SiMe<sub>3</sub>) in THF for 4 h, followed by treatment with [(Me<sub>3</sub>Si)<sub>2</sub>ÂN]<sub>3</sub>ÂREÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub>, generated zwitterion complexes [<b>L</b><sub>2</sub>RE]Â[REClÂ{NÂ(SiMe<sub>3</sub>)<sub>2</sub>}<sub>3</sub>] (<b>L</b> = [4-CH<sub>3</sub>-2-{(C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>-[NÂ(CH)<sub>2</sub>ÂCN]}ÂC<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N; RE = Y (<b>3</b>), Er (<b>4</b>), Yb (<b>5</b>)) in less than 20% yields together with fused-heterocyclic
compound <b>1</b>. Additionally, the reaction of H<sub>3</sub><b>L</b>Cl<sub>2</sub> with 6 equiv of NaNÂ(SiMe<sub>3</sub>)<sub>2</sub> in THF for 4 h, followed by treatment with YbCl<sub>3</sub>, generated a novel discrete complex [<b>L</b><sub>2</sub>Yb]Â[{NaÂ(μ-NÂ(SiMe<sub>3</sub>)<sub>2</sub>)}<sub>5</sub>Â(μ<sub>5</sub>-Cl)] (<b>6</b>). The one-pot
reaction of H<sub>3</sub><b>L</b>Cl<sub>2</sub> with <i>n</i>-BuLi, followed by reaction with [(Me<sub>3</sub>Si)<sub>2</sub>ÂN]<sub>3</sub>ÂREÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub> in THF at −78 °C, generated the CNC-pincer lanthanide
bisamido complexes <b>L</b>REÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (RE = Er (<b>2</b>), Y (<b>7</b>), Sm (<b>8</b>), Eu (<b>9</b>)) in moderate yields.
These kinds of biscarbene supported pincer bisamido complexes could
also be prepared by a one-pot reaction of bisÂ(imidazolium) salt (H<sub>3</sub><b>L</b>Cl<sub>2</sub>) with 5 equiv of NaNÂ(SiMe<sub>3</sub>)<sub>2</sub>, followed by treatment with RECl<sub>3</sub>, in good yields at −78 °C. Investigation of the catalytic
activity of complexes <b>2</b> and <b>7</b>–<b>9</b> indicated that all complexes showed a high activity toward
the addition of terminal alkynes to carbodiimides producing propiolimidines,
which represents the first example of rare-earth metal CNC-pincer-type
catalysts applied for catalytic C–H bond addition of terminal
alkynes to carbodiimides at room temperature
Synthesis and Characterization of Rare-Earth Metal Complexes Supported by 2‑Imino or Amino Appended Indolyl Ligands with Diverse Hapticities: Tunable Selective Catalysis for Isoprene Polymerization
The reaction of 2-(2,6-DippNHCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>NH (Dipp = 2,6-<sup><i>i</i></sup>PrC<sub>6</sub>H<sub>3</sub>, C<sub>8</sub>H<sub>5</sub>NH
= indolyl) with 1 equiv
of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>YbÂ(THF)<sub>2</sub> at room temperature generated mononuclear ytterbium complex <b>1</b> having the indolyl ligands in η<sup>1</sup>:η<sup>1</sup> mode with reduction of Yb<sup>3+</sup> to Yb<sup>2+</sup> and oxidation of the amino to imino group. In the case of Er and
Y, the reactions produced dinuclear complexes <b>2</b> and <b>3</b> having the indolyl ligands in μ-η<sup>2</sup>:η<sup>2</sup>:η<sup>1</sup> modes with the central metals.
When the rare-earth metal is dysprosium, the reaction afforded mixed
ligated dinuclear complex <b>4a</b> having indolyl ligands in
μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup> and μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup> modes with Dy, and its isomer <b>4b</b> having the
indolyl ligands only in μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup> modes with Dy. However, when the rare-earth
metal is Gd, the reaction only produced the mixed ligated dinuclear
gadolinium complex [(μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)ÂIndÂ(μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)ÂInd]Â[GdÂ(CH<sub>2</sub>SiMe<sub>3</sub>)Â(thf)]<sub>2</sub> (<b>5</b>), having indolyl ligands in μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup> and μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup> modes with Gd. In
addition, treatment of 2-(2,6-DippNHCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>NH with 1.25 equiv of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>GdÂ(THF)<sub>2</sub> produced the alkoxido-bridged trinuclear
gadolinium complex [(μ-η<sup>3</sup>:η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)ÂIndÂ(μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)ÂInd<i>-</i>(η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)ÂInd]-Gd<sub>3</sub>[(μ<sub>3</sub><i>-</i>OÂ(CH<sub>2</sub>)<sub>5</sub>SiMe<sub>3</sub>)Â(μ<sub>2</sub>-OÂ(CH<sub>2</sub>)<sub>5</sub>SiMe<sub>3</sub>)Â(thf)<sub>3</sub>] (<b>6</b>) having
indolyl ligands in η<sup>1</sup>:η<sup>1</sup>, μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>, and μ-η<sup>3</sup>:η<sup>2</sup>:η<sup>1</sup>:η <sup>1</sup> modes with metals, respectively. In complex <b>6</b>, sp<sup>2</sup> C–H activation is observed at the 7-indolyl position
producing unique 2-amido substituted indolyl-1,7-dianions having a
μ-η<sup>3</sup>:η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> bonding modes with three metals. The OÂ(CH<sub>2</sub>)<sub>5</sub>SiMe<sub>3</sub> arises from the ring-opening
of THF by attack of CH<sub>2</sub>SiMe<sub>3</sub>. Moreover, when
2-(2,6-DippNHCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>NH was treated
with 1 equiv of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>SmÂ(THF)<sub>2</sub>, a dinuclear samarium complex [μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-DippNCH<sub>2</sub>)ÂInd]<sub>3</sub>Sm<sub>2</sub>(thf)<sub>3</sub> (<b>7</b>)
having a bridged indolyl ligand in μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities was isolated. All structures
of the complexes have been determined by X-ray crystallographic analyses.
Dinuclear alkyl complexes <b>2</b>–<b>5</b> have
been tested as isoprene polymerization initiators in the presence
of Al<sup><i>i</i></sup>Bu<sub>3</sub> and [Ph<sub>3</sub>C]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]. The regioselectivity
for isoprene polymerization is tunable from 1,4-<i>cis</i> (up to 93.5%) to 3,4- (up to 86.2%) selectivity by these catalysts
simply by adjusting the addition order of Al<sup><i>i</i></sup>Bu<sub>3</sub> and [Ph<sub>3</sub>C]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]
Synthesis and Reactivity of Rare-Earth-Metal Monoalkyl Complexes Supported by Bidentate Indolyl Ligands and Their High Performance in Isoprene 1,4-cis Polymerization
A series
of novel rare-earth-metal monoalkyl complexes incorporating
partially rotation restricted [N,N]-bidentate indolyl ligands were
synthesized and characterized, and their reactivities and catalytic
activities were investigated. Treatment of [REÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub>] with 1 equiv of 2-[(<i>N</i>-2,6-diisopropylphenyl)Âiminomethyl)]Âindole (2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>NH) in toluene at room temperature afforded the
rare-earth-metal monoalkyl complexes [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂInd]<sub>2</sub>REÂ(CH<sub>2</sub>SiMe<sub>3</sub>)Â(thf) (Ind = indolyl; RE = Yb (<b>1</b>), Er (<b>2</b>), Y (<b>3</b>), Dy (<b>4</b>), Gd (<b>5</b>)) and the samarium complex [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂInd]<sub>3</sub>Sm (<b>6</b>) via alkane
elimination in good yields. Treatment of complex <b>2</b> or <b>3</b> with 1 equiv of PhSiH<sub>3</sub> in toluene at 80 °C
for 12 h afforded the dinuclear complexes {[μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH<sub>2</sub>)ÂInd]ÂREÂ[2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂInd]}<sub>2</sub> (Ind = indolyl, RE = Er (<b>7</b>), Y (<b>8</b>)) in good isolated yields. Treatment of complex <b>2</b> or <b>3</b> with 1 equiv of amidine (2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNî—»CHNHÂ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) in toluene
produced the corresponding complexes [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N]<sub>2</sub>REÂ[(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNî—»CHNÂ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)] (RE = Er (<b>9</b>), Y (<b>10</b>)) possessing the amidinate ligand [(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>N)<sub>2</sub>CH]<sup>−</sup>. The molecular structures of all complexes were determined
by X-ray crystallography. The monoalkyl complexes <b>1</b>–<b>5</b> were tested as isoprene polymerization initiators. Among
the complexes investigated, the optimum combination <b>5</b>/Al<sup><i>i</i></sup>Bu<sub>3</sub>/[Ph<sub>3</sub>C]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] displayed a high catalytic activity
in isoprene polymerization, producing polymers with an extremely high
1,4-cis selectivity (up to 99%), a high number-average molecular weight
(<i>M</i><sub>n</sub> = 7.2 × 10<sup>5</sup>), and
a narrow molecular weight distribution (PDI = 1.34) at an isoprene
to initiator molar ratio of 6000:1
Synthesis and Reactivity of Rare-Earth-Metal Monoalkyl Complexes Supported by Bidentate Indolyl Ligands and Their High Performance in Isoprene 1,4-cis Polymerization
A series
of novel rare-earth-metal monoalkyl complexes incorporating
partially rotation restricted [N,N]-bidentate indolyl ligands were
synthesized and characterized, and their reactivities and catalytic
activities were investigated. Treatment of [REÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub>] with 1 equiv of 2-[(<i>N</i>-2,6-diisopropylphenyl)Âiminomethyl)]Âindole (2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>NH) in toluene at room temperature afforded the
rare-earth-metal monoalkyl complexes [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂInd]<sub>2</sub>REÂ(CH<sub>2</sub>SiMe<sub>3</sub>)Â(thf) (Ind = indolyl; RE = Yb (<b>1</b>), Er (<b>2</b>), Y (<b>3</b>), Dy (<b>4</b>), Gd (<b>5</b>)) and the samarium complex [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂInd]<sub>3</sub>Sm (<b>6</b>) via alkane
elimination in good yields. Treatment of complex <b>2</b> or <b>3</b> with 1 equiv of PhSiH<sub>3</sub> in toluene at 80 °C
for 12 h afforded the dinuclear complexes {[μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH<sub>2</sub>)ÂInd]ÂREÂ[2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂInd]}<sub>2</sub> (Ind = indolyl, RE = Er (<b>7</b>), Y (<b>8</b>)) in good isolated yields. Treatment of complex <b>2</b> or <b>3</b> with 1 equiv of amidine (2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNî—»CHNHÂ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) in toluene
produced the corresponding complexes [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N]<sub>2</sub>REÂ[(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNî—»CHNÂ(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)] (RE = Er (<b>9</b>), Y (<b>10</b>)) possessing the amidinate ligand [(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>N)<sub>2</sub>CH]<sup>−</sup>. The molecular structures of all complexes were determined
by X-ray crystallography. The monoalkyl complexes <b>1</b>–<b>5</b> were tested as isoprene polymerization initiators. Among
the complexes investigated, the optimum combination <b>5</b>/Al<sup><i>i</i></sup>Bu<sub>3</sub>/[Ph<sub>3</sub>C]Â[BÂ(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] displayed a high catalytic activity
in isoprene polymerization, producing polymers with an extremely high
1,4-cis selectivity (up to 99%), a high number-average molecular weight
(<i>M</i><sub>n</sub> = 7.2 × 10<sup>5</sup>), and
a narrow molecular weight distribution (PDI = 1.34) at an isoprene
to initiator molar ratio of 6000:1
Synthesis, Structure, and Reactivity of Lanthanide Complexes Incorporating Indolyl Ligands in Novel Hapticities
The
chemistry of interactions of 2-(2,6-diisopropylphenylaminomethylene)Âindole
ligand (<b>1</b>) with europium and ytterbium amides is described.
Reaction of 2-(2,6-diisopropylphenylaminomethylene)Âindole 2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NHCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>NH (<b>1</b>) with europium amide
[(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>Eu<sup>III</sup>(μ-Cl)ÂLiÂ(THF)<sub>3</sub> afforded a novel europiumÂ(II) complex formulated as {[μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N]ÂEuÂ[2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N]}<sub>2</sub> (<b>2</b>), having a bridged indolyl ligand in the novel μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities with
the reduction of europiumÂ(III) to europiumÂ(II) and the oxidation of
amino to imino group. Reaction of 2-(2,6-diisopropylphenylaminomethylene)Âindole
2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NHCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>NH (<b>1</b>) with
ytterbiumÂ(III) amide [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>Yb<sup>III</sup>(μ-Cl)ÂLiÂ(THF)<sub>3</sub> produced the only
deprotonated ytterbiumÂ(III) complex formulated as [2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>N]ÂYbÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]Â(THF)<sub>2</sub> (<b>3</b>), having an η<sup>1</sup> hapticity
indolyl ligand. Reaction of <b>2</b> with formamidine [(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNCHNHÂ(C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)] produced {[μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N]ÂEuÂ[(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNCHNÂ(C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)]Â(THF)}<sub>2</sub> (<b>4</b>), which has
a bridged indolyl ligand in the novel μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities, whereas the reaction of <b>2</b> with the more sterically bulky formamidine [(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNCHNHÂ(C<sub>6</sub>H<sub>3</sub><i>i</i>-Pr<sub>2</sub>-2,6)] afforded complex
{[μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N]ÂEuÂ[(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNî—»CHNÂ(C<sub>6</sub>H<sub>3</sub><i>i</i>-Pr<sub>2</sub>-2,6)]Â(THF)}<sub>2</sub> (<b>5</b>), having the indolyl ligand in the novel μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities. The
results represent the first example of organometallic complexes having
indolyl ligands in the novel μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>, μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>, and μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> bonding modes with metal
Synthesis, Structure, and Reactivity of Lanthanide Complexes Incorporating Indolyl Ligands in Novel Hapticities
The
chemistry of interactions of 2-(2,6-diisopropylphenylaminomethylene)Âindole
ligand (<b>1</b>) with europium and ytterbium amides is described.
Reaction of 2-(2,6-diisopropylphenylaminomethylene)Âindole 2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NHCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>NH (<b>1</b>) with europium amide
[(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>Eu<sup>III</sup>(μ-Cl)ÂLiÂ(THF)<sub>3</sub> afforded a novel europiumÂ(II) complex formulated as {[μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N]ÂEuÂ[2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N]}<sub>2</sub> (<b>2</b>), having a bridged indolyl ligand in the novel μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities with
the reduction of europiumÂ(III) to europiumÂ(II) and the oxidation of
amino to imino group. Reaction of 2-(2,6-diisopropylphenylaminomethylene)Âindole
2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NHCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>NH (<b>1</b>) with
ytterbiumÂ(III) amide [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>Yb<sup>III</sup>(μ-Cl)ÂLiÂ(THF)<sub>3</sub> produced the only
deprotonated ytterbiumÂ(III) complex formulated as [2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH<sub>2</sub>)ÂC<sub>8</sub>H<sub>5</sub>N]ÂYbÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]Â(THF)<sub>2</sub> (<b>3</b>), having an η<sup>1</sup> hapticity
indolyl ligand. Reaction of <b>2</b> with formamidine [(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNCHNHÂ(C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)] produced {[μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N]ÂEuÂ[(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNCHNÂ(C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)]Â(THF)}<sub>2</sub> (<b>4</b>), which has
a bridged indolyl ligand in the novel μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities, whereas the reaction of <b>2</b> with the more sterically bulky formamidine [(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNCHNHÂ(C<sub>6</sub>H<sub>3</sub><i>i</i>-Pr<sub>2</sub>-2,6)] afforded complex
{[μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N]ÂEuÂ[(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)ÂNî—»CHNÂ(C<sub>6</sub>H<sub>3</sub><i>i</i>-Pr<sub>2</sub>-2,6)]Â(THF)}<sub>2</sub> (<b>5</b>), having the indolyl ligand in the novel μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities. The
results represent the first example of organometallic complexes having
indolyl ligands in the novel μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>, μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>, and μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> bonding modes with metal
Synthesis, Characterization, and Reactivity of Lanthanide Amides Incorporating Neutral Pyrrole Ligand. Isolation and Characterization of Active Catalyst for Cyanosilylation of Ketones
A series of lanthanide amido complexes
incorporating a neutral
pyrrole ligand were synthesized and characterized, and their catalytic
activities were studied. Treatment of [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>ÂLnÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub> with
1 equiv of [(2,5-Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>N)ÂCH<sub>2</sub>CH<sub>2</sub>] <sub>2</sub>NH (<b>1</b>) in toluene
afforded the corresponding lanthanide amides with the formula [η<sup>5</sup>:η<sup>1</sup>-(2,5-Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>N)ÂCH<sub>2</sub>CH<sub>2</sub>]<sub>2</sub>ÂNLnÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (Ln = La (<b>2</b>), Nd (<b>3</b>)). Reaction of <b>2</b> or <b>3</b> with <i>N</i>,<i>N</i>′-dicycloÂhexylÂcarboÂdiimide
(CyNî—»Cî—»NCy) gave the carbodiimide selectively inserted
into the appended Ln–N bond products formulated as CyNCÂ{[<i>N</i>,<i>N</i>-(2,5-Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>N)ÂCH<sub>2</sub>CH<sub>2</sub>]<sub>2</sub>N}ÂNCyLnÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (Ln = La (<b>4</b>), Nd (<b>5</b>)). Reactions of the lanthanide amides with Me<sub>3</sub>SiCN were also examined. A mixed reaction of [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>ÂLaÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub>, [(2,5-Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>N)ÂCH<sub>2</sub>CH<sub>2</sub>]<sub>2</sub>NH (<b>1</b>), and Me<sub>3</sub>SiCN in toluene at room temperature produced the novel cyano bridged
dinuclear lanthanum complex η<sup>5</sup>:η<sup>1</sup>:η<sup>3</sup>-[(2,5- Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>NÂCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>N]ÂLaÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]Â(μ-CN)ÂLaÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub> (<b>6</b>). The stoichiometric
reactions of lanthanide amides <b>2</b> or <b>3</b> with
Me<sub>3</sub>SiCN produced the novel trinuclear lanthanum and neodymium
complexes {(η<sup>5</sup>:η<sup>1</sup>-[(2,5-Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>ÂNCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>N]ÂLnÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]Â(μ-CN)}<sub>3</sub> (Ln = La (<b>7</b>), Nd (<b>8</b>)) through selective
σ-bond metathesis reaction of the terminal Ln–N (NÂ(SiMe<sub>3</sub>)<sub>2</sub>) bond with the Si–C bond of Me<sub>3</sub>SiCN. On the basis of the stoichiometric reactions of complexes <b>2</b>, or <b>3</b> with Me<sub>3</sub>SiCN, complexes <b>2</b>, <b>3</b>, <b>4</b>, <b>5</b>, <b>7</b>, and <b>8</b> as catalysts for cyanosilylation of ketones
were investigated. Results indicated that these complexes displayed
a high catalytic activity on addition of Me<sub>3</sub>SiCN to ketones,
and the activity of the complexes has the order of <b>7</b> ∼ <b>8</b> > <b>2</b> ∼ <b>3</b> ∼ <b>4 ∼ <b>5</b></b>. Thus, complex <b>7</b> or <b>8</b> was proposed
as the active catalyst in the catalytic reaction for the precatalysts
of <b>2</b> and <b>3</b>
Synthesis of Bis(NHC)-Based CNC-Pincer Rare-Earth-Metal Amido Complexes and Their Application for the Hydrophosphination of Heterocumulenes
The
bisÂ(NHC) (NHC = N-heterocyclic carbene)-based CNC-pincer rare-earth-metal
amido complexes <b>L</b>REÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>L</b> = 4-CH<sub>3</sub>-2-{R-[NÂ(CH)<sub>2</sub>CN]}ÂC<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N; <b>L</b><sup><b>2</b></sup>, R = CH<sub>3</sub>; <b>L</b><sup><b>3</b></sup>, R = CHÂ(CH<sub>3</sub>)<sub>2</sub>) were synthesized
and characterized, and their catalytic activities toward hydrophosphination
of heterocumulenes were developed. Reactions of bisÂ[2-(3-methylimidazolium)-4-methylphenyl]Âamine
diiodide (H<sub>3</sub><b>L</b><sup><b>2</b></sup>I<sub>2</sub>) or bisÂ[2-(3-isopropylimidazolium)-4-methylphenyl]Âamine diiodide
(H<sub>3</sub><b>L</b><sup><b>3</b></sup>I<sub>2</sub>) with 5 equiv of NaNÂ(SiMe<sub>3</sub>)<sub>2</sub> followed by treatment
with 1 equiv of RECl<sub>3</sub> in THF at −78 °C afforded
the bisÂ(NHC)-based CNC-pincer rare-earth-metal amido complexes <b>L</b>REÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>L</b><sup><b>2</b></sup> = [4-CH<sub>3</sub>-2-{CH<sub>3</sub>-[NÂ(CH)<sub>2</sub>CN]}ÂC<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N, RE = Y (<b>1</b>), Eu (<b>2</b>), Er (<b>3</b>); <b>L</b><sup><b>3</b></sup> = [4-CH<sub>3</sub>-2-{(CH<sub>3</sub>)<sub>2</sub>CH-[NÂ(CH)<sub>2</sub>CN]}ÂC<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N, RE = Y (<b>4</b>), Er (<b>5</b>), Yb (<b>6</b>)). Complexes <b>4</b>–<b>6</b> can also be prepared
by stepwise reactions of H<sub>3</sub><b>L</b><sup><b>3</b></sup>I<sub>2</sub> with <i>n</i>-BuLi in THF followed
by reactions with [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>REÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub>. Stepwise reactions of H<sub>3</sub><b>L</b><sup><b>2</b></sup>I<sub>2</sub> with <i>n</i>-BuLi in THF followed
by treatment with [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>REÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub> generated the bisÂ(NHC)-based CNC-pincer rare-earth-metal
amido complexes <b>L</b><sup><b>2</b></sup>REÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (RE = Y (<b>1</b>), Er (<b>3</b>)) together with the fused-heterocyclic compound 3,8,9-trimethyl-8a,9-dihydro-8<i>H</i>-benzoÂ[4,5]ÂimidazoÂ[2′,1′:2,3]ÂimidazoÂ[1,2-<i>a</i>]ÂimidazoÂ[2,1-<i>c</i>]Âquinoxaline (<b>7</b>), which formed through carbene C–C and C–N coupling.
Attempts to prepare complexes of the type <b>L</b>REÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> by reaction of H<sub>3</sub><b>L</b><sup><b>3</b></sup>I<sub>2</sub> with [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>YbÂ(μ-Cl)ÂLiÂ(THF)<sub>3</sub> in
THF, however, afforded mixed complexes of the bisÂ(NHC)-based CNC-pincer
ytterbium complex <b>L</b><sup><b>3</b></sup>YbÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>6</b>) and the unexpected
bisÂ(NHC)-based CNC-pincer monoamido ytterbium iodide <b>L</b><sup><b>3</b></sup>YbIÂ[NÂ(SiMe<sub>3</sub>)<sub>2</sub>] (<b>8</b>). Investigation of the catalytic activity of complexes <b>1</b>–<b>6</b> and <b>8</b> indicated that
all complexes displayed high activity toward the addition of the phosphine
P–H bond to heterocumulenes, producing the corresponding phosphaguanidines,
phosphaureas, and phosphathioureas, which represents the first example
of bisÂ(NHC)-based CNC-pincer type rare-earth-metal amido complexes
as catalysts for the catalytic addition of the phosphine P–H
bond to heterocumulenes with high efficiency in the presence of a
low catalyst loading at room temperature
Synthesis and Characterization of Organo-Rare-Earth Metal Monoalkyl Complexes Supported by Carbon σ‑Bonded Indolyl Ligands: High Specific Isoprene 1,4-Cis Polymerization Catalysts
A series of <i>N</i>-protected 3-imino-functionalized indolyl ligands 1-R-3-(R′Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N [R = Bn, R′ = 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>HL</b><sup><b>1</b></sup>); R = CH<sub>3</sub>, R′ = 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>HL</b><sup><b>2</b></sup>); R = Bn, R′ = <sup><i>t</i></sup>Bu (<b>HL</b><sup><b>3</b></sup>)] and 1-CH<sub>3</sub>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>Nî—»CH)ÂC<sub>8</sub>H<sub>5</sub>N (<b>HL</b><sup><b>4</b></sup>) was prepared via reactions of <i>N</i>-protected indolyl aldehydes with corresponding amines.
The C–H σ-bond metathesis followed by alkane elimination
reactions between REÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> and <b>HL</b><sup><b>1</b></sup><b>–HL</b><sup><b>3</b></sup> afforded the carbon σ-bonded indolyl-ligated
rare-earth metal monoalkyl complexes. Reactions of REÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> with 2 equiv of <b>HL</b><sup><b>1</b></sup> or <b>HL</b><sup><b>2</b></sup> gave the carbon σ-bonded indolyl-ligated rare-earth
metal monoalkyl complexes <b>L</b><sup><b>1</b></sup><sub>2</sub>RECH<sub>2</sub>SiMe<sub>3</sub> (RE = YÂ(<b>1</b>),
ErÂ(<b>2</b>), DyÂ(<b>3</b>)) and <b>L</b><sup><b>2</b></sup><sub>2</sub>RECH<sub>2</sub>SiMe<sub>3</sub> (RE =
YÂ(<b>5</b>), Er(6), DyÂ(<b>7</b>), YbÂ(<b>8</b>)),
while reaction of YbÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> with 2 equiv of <b>HL</b><sup><b>1</b></sup> afforded
the ytterbium dialkyl complex <b>L</b><sup><b>1</b></sup>YbÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf)<sub>2</sub> (<b>4</b>). Reactions of REÂ(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> with <b>HL</b><sup><b>3</b></sup> gave
the trisÂ(heteroaryl) rare-earth metal complexes <b>L</b><sup><b>3</b></sup><sub>3</sub>RE (RE = YÂ(<b>9</b>), ErÂ(<b>10</b>)). In the presence of cocatalysts, the rare-earth metal
monoalkyl complexes initiated isoprene polymerization with a high
activity (90% conversion of 1000 equiv of isoprene in 25 min) producing
polymers with high regio- and stereoselectivity (1,4-cis polymers
up to 99%)