10 research outputs found

    Tris(pyrazolyl)methanide Complexes of Trivalent Rare-Earth Metals

    No full text
    Three types of trivalent rare-earth-metal complexes supported by a monoanionic tris­(pyrazolyl)­methanide ligand were synthesized and structurally characterized, and the catalytic activity of the dialkyl derivatives for isoprene polymerization was investigated. Reactions of the lithium salt of tris­(3,5-dimethylpyrazolyl)­methanide <b>L</b>Li­(THF) with 1 equiv of ScCl<sub>3</sub>(THF)<sub>3</sub>, YCl<sub>3</sub>, or LuCl<sub>3</sub> in THF provided the ion-pair complexes [<b>L</b>LnCl<sub>3</sub>]­[Li­(THF)<sub>4</sub>] (Ln = Sc (<b>1</b>), Y (<b>2</b>), Lu (<b>3</b>)). Dialkyl complexes <b>L</b>Ln­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF) (Ln = Y (<b>4</b>), Lu (<b>5</b>)) were prepared by salt metathesis of <b>L</b>Li­(THF) with 1 equiv of [Y­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF)<sub>3</sub>]­[BPh<sub>4</sub>] or [Lu­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF)<sub>3</sub>]­[BPh<sub>4</sub>] in toluene. Reaction of <b>5</b> with PhSiH<sub>3</sub> provided the unexpected alkylidene-bridged dinuclear complex <b>L</b><sub>2</sub>Lu<sub>2</sub>(μ-η<sup>1</sup>:η<sup>1</sup>-3,5-(CH<sub>3</sub>)­C<sub>3</sub>HN<sub>2</sub>)<sub>2</sub>(μ-CHSiMe<sub>3</sub>) (<b>6</b>). Complexes <b>1</b>–<b>6</b> were structurally characterized by single-crystal X-ray diffraction, showing that the tris­(pyrazolyl)­methanide ligand acts as a κ<sup>3</sup>-coordinating six-electron donor in all complexes. The dialkyl complexes catalyzed 1,4-cis polymerization of isoprene with high selectivity upon activation with borate and alkylaluminum

    CNC-Pincer Rare-Earth Metal Amido Complexes with a Diarylamido Linked Biscarbene Ligand: Synthesis, Characterization, and Catalytic Activity

    No full text
    In preparation of CNC-pincer rare-earth metal amido complexes with a diarylamido linked biscarbene ligand, it is found that conditions have a key influence on final products. Reaction of a THF suspension of bis­[2-(3-benzyl­imidazolium)-4-methyl­phenyl]­amine dichlorides (H<sub>3</sub><b>L</b>Cl<sub>2</sub>) with [(Me<sub>3</sub>Si)<sub>2</sub>­N]<sub>3</sub>­RE­(μ-Cl)­Li­(THF)<sub>3</sub> (RE = Yb, Eu, Sm) in THF at room temperature afforded the only unexpected fused-heterocyclic compound 8,9-dibenzyl-3,14-dimethyl-8<i>a</i>,9-dihydro-8<i>H</i>-benzo­[4,5]­imidazo­[2′,1′:2,3]­imidazo­[1,2-<i>a</i>]­imidazo­[2,1-<i>c</i>]­quinoxaline (<b>1</b>) containing an imidazolyl ring and a piperidyl ring, which formed through carbene C–C and C–N coupling. However, the reaction of H<sub>3</sub><b>L</b>Cl<sub>2</sub> with [(Me<sub>3</sub>Si)<sub>2</sub>­N]<sub>3</sub>­Er­(μ-Cl)­Li­(THF)<sub>3</sub> in toluene afforded the CNC-pincer erbium amido complex incorporating a diarylamido linked biscarbene ligand <b>L</b>Er­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>2</b>) in low yield and the above fused-heterocyclic compound <b>1</b>. The stepwise reaction of H<sub>3</sub><b>L</b>Cl<sub>2</sub> with strong bases (<i>n</i>-BuLi or LiCH<sub>2</sub>SiMe<sub>3</sub>) in THF for 4 h, followed by treatment with [(Me<sub>3</sub>Si)<sub>2</sub>­N]<sub>3</sub>­RE­(μ-Cl)­Li­(THF)<sub>3</sub>, generated zwitterion complexes [<b>L</b><sub>2</sub>RE]­[RECl­{N­(SiMe<sub>3</sub>)<sub>2</sub>}<sub>3</sub>] (<b>L</b> = [4-CH<sub>3</sub>-2-{(C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>-[N­(CH)<sub>2</sub>­CN]}­C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N; RE = Y (<b>3</b>), Er (<b>4</b>), Yb (<b>5</b>)) in less than 20% yields together with fused-heterocyclic compound <b>1</b>. Additionally, the reaction of H<sub>3</sub><b>L</b>Cl<sub>2</sub> with 6 equiv of NaN­(SiMe<sub>3</sub>)<sub>2</sub> in THF for 4 h, followed by treatment with YbCl<sub>3</sub>, generated a novel discrete complex [<b>L</b><sub>2</sub>Yb]­[{Na­(μ-N­(SiMe<sub>3</sub>)<sub>2</sub>)}<sub>5</sub>­(μ<sub>5</sub>-Cl)] (<b>6</b>). The one-pot reaction of H<sub>3</sub><b>L</b>Cl<sub>2</sub> with <i>n</i>-BuLi, followed by reaction with [(Me<sub>3</sub>Si)<sub>2</sub>­N]<sub>3</sub>­RE­(μ-Cl)­Li­(THF)<sub>3</sub> in THF at −78 °C, generated the CNC-pincer lanthanide bisamido complexes <b>L</b>RE­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (RE = Er (<b>2</b>), Y (<b>7</b>), Sm (<b>8</b>), Eu (<b>9</b>)) in moderate yields. These kinds of biscarbene supported pincer bisamido complexes could also be prepared by a one-pot reaction of bis­(imidazolium) salt (H<sub>3</sub><b>L</b>Cl<sub>2</sub>) with 5 equiv of NaN­(SiMe<sub>3</sub>)<sub>2</sub>, followed by treatment with RECl<sub>3</sub>, in good yields at −78 °C. Investigation of the catalytic activity of complexes <b>2</b> and <b>7</b>–<b>9</b> indicated that all complexes showed a high activity toward the addition of terminal alkynes to carbodiimides producing propiolimidines, which represents the first example of rare-earth metal CNC-pincer-type catalysts applied for catalytic C–H bond addition of terminal alkynes to carbodiimides at room temperature

    Synthesis and Characterization of Rare-Earth Metal Complexes Supported by 2‑Imino or Amino Appended Indolyl Ligands with Diverse Hapticities: Tunable Selective Catalysis for Isoprene Polymerization

    No full text
    The reaction of 2-(2,6-DippNHCH<sub>2</sub>)­C<sub>8</sub>H<sub>5</sub>NH (Dipp = 2,6-<sup><i>i</i></sup>PrC<sub>6</sub>H<sub>3</sub>, C<sub>8</sub>H<sub>5</sub>NH = indolyl) with 1 equiv of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>Yb­(THF)<sub>2</sub> at room temperature generated mononuclear ytterbium complex <b>1</b> having the indolyl ligands in η<sup>1</sup>:η<sup>1</sup> mode with reduction of Yb<sup>3+</sup> to Yb<sup>2+</sup> and oxidation of the amino to imino group. In the case of Er and Y, the reactions produced dinuclear complexes <b>2</b> and <b>3</b> having the indolyl ligands in μ-η<sup>2</sup>:η<sup>2</sup>:η<sup>1</sup> modes with the central metals. When the rare-earth metal is dysprosium, the reaction afforded mixed ligated dinuclear complex <b>4a</b> having indolyl ligands in μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup> and μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup> modes with Dy, and its isomer <b>4b</b> having the indolyl ligands only in μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup> modes with Dy. However, when the rare-earth metal is Gd, the reaction only produced the mixed ligated dinuclear gadolinium complex [(μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)­Ind­(μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)­Ind]­[Gd­(CH<sub>2</sub>SiMe<sub>3</sub>)­(thf)]<sub>2</sub> (<b>5</b>), having indolyl ligands in μ-η<sup>5</sup>:η<sup>1</sup>:η<sup>1</sup> and μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup> modes with Gd. In addition, treatment of 2-(2,6-DippNHCH<sub>2</sub>)­C<sub>8</sub>H<sub>5</sub>NH with 1.25 equiv of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>Gd­(THF)<sub>2</sub> produced the alkoxido-bridged trinuclear gadolinium complex [(μ-η<sup>3</sup>:η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)­Ind­(μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)­Ind<i>-</i>(η<sup>1</sup>:η<sup>1</sup>)-2-(2,6-DippNCH<sub>2</sub>)­Ind]-Gd<sub>3</sub>[(μ<sub>3</sub><i>-</i>O­(CH<sub>2</sub>)<sub>5</sub>SiMe<sub>3</sub>)­(μ<sub>2</sub>-O­(CH<sub>2</sub>)<sub>5</sub>SiMe<sub>3</sub>)­(thf)<sub>3</sub>] (<b>6</b>) having indolyl ligands in η<sup>1</sup>:η<sup>1</sup>, μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>, and μ-η<sup>3</sup>:η<sup>2</sup>:η<sup>1</sup>:η <sup>1</sup> modes with metals, respectively. In complex <b>6</b>, sp<sup>2</sup> C–H activation is observed at the 7-indolyl position producing unique 2-amido substituted indolyl-1,7-dianions having a μ-η<sup>3</sup>:η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> bonding modes with three metals. The O­(CH<sub>2</sub>)<sub>5</sub>SiMe<sub>3</sub> arises from the ring-opening of THF by attack of CH<sub>2</sub>SiMe<sub>3</sub>. Moreover, when 2-(2,6-DippNHCH<sub>2</sub>)­C<sub>8</sub>H<sub>5</sub>NH was treated with 1 equiv of (Me<sub>3</sub>SiCH<sub>2</sub>)<sub>3</sub>Sm­(THF)<sub>2</sub>, a dinuclear samarium complex [μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-DippNCH<sub>2</sub>)­Ind]<sub>3</sub>Sm<sub>2</sub>(thf)<sub>3</sub> (<b>7</b>) having a bridged indolyl ligand in μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities was isolated. All structures of the complexes have been determined by X-ray crystallographic analyses. Dinuclear alkyl complexes <b>2</b>–<b>5</b> have been tested as isoprene polymerization initiators in the presence of Al<sup><i>i</i></sup>Bu<sub>3</sub> and [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]. The regioselectivity for isoprene polymerization is tunable from 1,4-<i>cis</i> (up to 93.5%) to 3,4- (up to 86.2%) selectivity by these catalysts simply by adjusting the addition order of Al<sup><i>i</i></sup>Bu<sub>3</sub> and [Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]

    Synthesis and Reactivity of Rare-Earth-Metal Monoalkyl Complexes Supported by Bidentate Indolyl Ligands and Their High Performance in Isoprene 1,4-cis Polymerization

    No full text
    A series of novel rare-earth-metal monoalkyl complexes incorporating partially rotation restricted [N,N]-bidentate indolyl ligands were synthesized and characterized, and their reactivities and catalytic activities were investigated. Treatment of [RE­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub>] with 1 equiv of 2-[(<i>N</i>-2,6-diisopropylphenyl)­iminomethyl)]­indole (2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>NH) in toluene at room temperature afforded the rare-earth-metal monoalkyl complexes [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­Ind]<sub>2</sub>RE­(CH<sub>2</sub>SiMe<sub>3</sub>)­(thf) (Ind = indolyl; RE = Yb (<b>1</b>), Er (<b>2</b>), Y (<b>3</b>), Dy (<b>4</b>), Gd (<b>5</b>)) and the samarium complex [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­Ind]<sub>3</sub>Sm (<b>6</b>) via alkane elimination in good yields. Treatment of complex <b>2</b> or <b>3</b> with 1 equiv of PhSiH<sub>3</sub> in toluene at 80 °C for 12 h afforded the dinuclear complexes {[μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH<sub>2</sub>)­Ind]­RE­[2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­Ind]}<sub>2</sub> (Ind = indolyl, RE = Er (<b>7</b>), Y (<b>8</b>)) in good isolated yields. Treatment of complex <b>2</b> or <b>3</b> with 1 equiv of amidine (2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHNH­(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) in toluene produced the corresponding complexes [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N]<sub>2</sub>RE­[(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHN­(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)] (RE = Er (<b>9</b>), Y (<b>10</b>)) possessing the amidinate ligand [(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>N)<sub>2</sub>CH]<sup>−</sup>. The molecular structures of all complexes were determined by X-ray crystallography. The monoalkyl complexes <b>1</b>–<b>5</b> were tested as isoprene polymerization initiators. Among the complexes investigated, the optimum combination <b>5</b>/Al<sup><i>i</i></sup>Bu<sub>3</sub>/[Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] displayed a high catalytic activity in isoprene polymerization, producing polymers with an extremely high 1,4-cis selectivity (up to 99%), a high number-average molecular weight (<i>M</i><sub>n</sub> = 7.2 × 10<sup>5</sup>), and a narrow molecular weight distribution (PDI = 1.34) at an isoprene to initiator molar ratio of 6000:1

    Synthesis and Reactivity of Rare-Earth-Metal Monoalkyl Complexes Supported by Bidentate Indolyl Ligands and Their High Performance in Isoprene 1,4-cis Polymerization

    No full text
    A series of novel rare-earth-metal monoalkyl complexes incorporating partially rotation restricted [N,N]-bidentate indolyl ligands were synthesized and characterized, and their reactivities and catalytic activities were investigated. Treatment of [RE­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub>] with 1 equiv of 2-[(<i>N</i>-2,6-diisopropylphenyl)­iminomethyl)]­indole (2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>NH) in toluene at room temperature afforded the rare-earth-metal monoalkyl complexes [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­Ind]<sub>2</sub>RE­(CH<sub>2</sub>SiMe<sub>3</sub>)­(thf) (Ind = indolyl; RE = Yb (<b>1</b>), Er (<b>2</b>), Y (<b>3</b>), Dy (<b>4</b>), Gd (<b>5</b>)) and the samarium complex [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­Ind]<sub>3</sub>Sm (<b>6</b>) via alkane elimination in good yields. Treatment of complex <b>2</b> or <b>3</b> with 1 equiv of PhSiH<sub>3</sub> in toluene at 80 °C for 12 h afforded the dinuclear complexes {[μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH<sub>2</sub>)­Ind]­RE­[2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­Ind]}<sub>2</sub> (Ind = indolyl, RE = Er (<b>7</b>), Y (<b>8</b>)) in good isolated yields. Treatment of complex <b>2</b> or <b>3</b> with 1 equiv of amidine (2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHNH­(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) in toluene produced the corresponding complexes [η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N]<sub>2</sub>RE­[(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHN­(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)] (RE = Er (<b>9</b>), Y (<b>10</b>)) possessing the amidinate ligand [(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>N)<sub>2</sub>CH]<sup>−</sup>. The molecular structures of all complexes were determined by X-ray crystallography. The monoalkyl complexes <b>1</b>–<b>5</b> were tested as isoprene polymerization initiators. Among the complexes investigated, the optimum combination <b>5</b>/Al<sup><i>i</i></sup>Bu<sub>3</sub>/[Ph<sub>3</sub>C]­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] displayed a high catalytic activity in isoprene polymerization, producing polymers with an extremely high 1,4-cis selectivity (up to 99%), a high number-average molecular weight (<i>M</i><sub>n</sub> = 7.2 × 10<sup>5</sup>), and a narrow molecular weight distribution (PDI = 1.34) at an isoprene to initiator molar ratio of 6000:1

    Synthesis, Structure, and Reactivity of Lanthanide Complexes Incorporating Indolyl Ligands in Novel Hapticities

    No full text
    The chemistry of interactions of 2-(2,6-diisopropylphenylaminomethylene)­indole ligand (<b>1</b>) with europium and ytterbium amides is described. Reaction of 2-(2,6-diisopropylphenylaminomethylene)­indole 2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NHCH<sub>2</sub>)­C<sub>8</sub>H<sub>5</sub>NH (<b>1</b>) with europium amide [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>Eu<sup>III</sup>(μ-Cl)­Li­(THF)<sub>3</sub> afforded a novel europium­(II) complex formulated as {[μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N]­Eu­[2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N]}<sub>2</sub> (<b>2</b>), having a bridged indolyl ligand in the novel μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities with the reduction of europium­(III) to europium­(II) and the oxidation of amino to imino group. Reaction of 2-(2,6-diisopropylphenylaminomethylene)­indole 2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NHCH<sub>2</sub>)­C<sub>8</sub>H<sub>5</sub>NH (<b>1</b>) with ytterbium­(III) amide [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>Yb<sup>III</sup>(μ-Cl)­Li­(THF)<sub>3</sub> produced the only deprotonated ytterbium­(III) complex formulated as [2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH<sub>2</sub>)­C<sub>8</sub>H<sub>5</sub>N]­Yb­[N­(SiMe<sub>3</sub>)<sub>2</sub>]­(THF)<sub>2</sub> (<b>3</b>), having an η<sup>1</sup> hapticity indolyl ligand. Reaction of <b>2</b> with formamidine [(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHNH­(C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)] produced {[μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N]­Eu­[(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHN­(C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)]­(THF)}<sub>2</sub> (<b>4</b>), which has a bridged indolyl ligand in the novel μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities, whereas the reaction of <b>2</b> with the more sterically bulky formamidine [(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHNH­(C<sub>6</sub>H<sub>3</sub><i>i</i>-Pr<sub>2</sub>-2,6)] afforded complex {[μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N]­Eu­[(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHN­(C<sub>6</sub>H<sub>3</sub><i>i</i>-Pr<sub>2</sub>-2,6)]­(THF)}<sub>2</sub> (<b>5</b>), having the indolyl ligand in the novel μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities. The results represent the first example of organometallic complexes having indolyl ligands in the novel μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>, μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>, and μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> bonding modes with metal

    Synthesis, Structure, and Reactivity of Lanthanide Complexes Incorporating Indolyl Ligands in Novel Hapticities

    No full text
    The chemistry of interactions of 2-(2,6-diisopropylphenylaminomethylene)­indole ligand (<b>1</b>) with europium and ytterbium amides is described. Reaction of 2-(2,6-diisopropylphenylaminomethylene)­indole 2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NHCH<sub>2</sub>)­C<sub>8</sub>H<sub>5</sub>NH (<b>1</b>) with europium amide [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>Eu<sup>III</sup>(μ-Cl)­Li­(THF)<sub>3</sub> afforded a novel europium­(II) complex formulated as {[μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N]­Eu­[2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N]}<sub>2</sub> (<b>2</b>), having a bridged indolyl ligand in the novel μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities with the reduction of europium­(III) to europium­(II) and the oxidation of amino to imino group. Reaction of 2-(2,6-diisopropylphenylaminomethylene)­indole 2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NHCH<sub>2</sub>)­C<sub>8</sub>H<sub>5</sub>NH (<b>1</b>) with ytterbium­(III) amide [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>Yb<sup>III</sup>(μ-Cl)­Li­(THF)<sub>3</sub> produced the only deprotonated ytterbium­(III) complex formulated as [2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH<sub>2</sub>)­C<sub>8</sub>H<sub>5</sub>N]­Yb­[N­(SiMe<sub>3</sub>)<sub>2</sub>]­(THF)<sub>2</sub> (<b>3</b>), having an η<sup>1</sup> hapticity indolyl ligand. Reaction of <b>2</b> with formamidine [(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHNH­(C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)] produced {[μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N]­Eu­[(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHN­(C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>-2,6)]­(THF)}<sub>2</sub> (<b>4</b>), which has a bridged indolyl ligand in the novel μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities, whereas the reaction of <b>2</b> with the more sterically bulky formamidine [(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHNH­(C<sub>6</sub>H<sub>3</sub><i>i</i>-Pr<sub>2</sub>-2,6)] afforded complex {[μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup>-2-(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N]­Eu­[(2,6-<i>i</i>-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­NCHN­(C<sub>6</sub>H<sub>3</sub><i>i</i>-Pr<sub>2</sub>-2,6)]­(THF)}<sub>2</sub> (<b>5</b>), having the indolyl ligand in the novel μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> hapticities. The results represent the first example of organometallic complexes having indolyl ligands in the novel μ-η<sup>6</sup>:η<sup>1</sup>:η<sup>1</sup>, μ-η<sup>3</sup>:η<sup>1</sup>:η<sup>1</sup>, and μ-η<sup>2</sup>:η<sup>1</sup>:η<sup>1</sup> bonding modes with metal

    Synthesis, Characterization, and Reactivity of Lanthanide Amides Incorporating Neutral Pyrrole Ligand. Isolation and Characterization of Active Catalyst for Cyanosilylation of Ketones

    No full text
    A series of lanthanide amido complexes incorporating a neutral pyrrole ligand were synthesized and characterized, and their catalytic activities were studied. Treatment of [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>­Ln­(μ-Cl)­Li­(THF)<sub>3</sub> with 1 equiv of [(2,5-Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>N)­CH<sub>2</sub>CH<sub>2</sub>] <sub>2</sub>NH (<b>1</b>) in toluene afforded the corresponding lanthanide amides with the formula [η<sup>5</sup>:η<sup>1</sup>-(2,5-Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>N)­CH<sub>2</sub>CH<sub>2</sub>]<sub>2</sub>­NLn­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (Ln = La (<b>2</b>), Nd (<b>3</b>)). Reaction of <b>2</b> or <b>3</b> with <i>N</i>,<i>N</i>′-dicyclo­hexyl­carbo­diimide (CyNCNCy) gave the carbodiimide selectively inserted into the appended Ln–N bond products formulated as CyNC­{[<i>N</i>,<i>N</i>-(2,5-Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>N)­CH<sub>2</sub>CH<sub>2</sub>]<sub>2</sub>N}­NCyLn­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (Ln = La (<b>4</b>), Nd (<b>5</b>)). Reactions of the lanthanide amides with Me<sub>3</sub>SiCN were also examined. A mixed reaction of [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>­La­(μ-Cl)­Li­(THF)<sub>3</sub>, [(2,5-Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>N)­CH<sub>2</sub>CH<sub>2</sub>]<sub>2</sub>NH (<b>1</b>), and Me<sub>3</sub>SiCN in toluene at room temperature produced the novel cyano bridged dinuclear lanthanum complex η<sup>5</sup>:η<sup>1</sup>:η<sup>3</sup>-[(2,5- Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>N­CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>N]­La­[N­(SiMe<sub>3</sub>)<sub>2</sub>]­(μ-CN)­La­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub> (<b>6</b>). The stoichiometric reactions of lanthanide amides <b>2</b> or <b>3</b> with Me<sub>3</sub>SiCN produced the novel trinuclear lanthanum and neodymium complexes {(η<sup>5</sup>:η<sup>1</sup>-[(2,5-Me<sub>2</sub>C<sub>4</sub>H<sub>2</sub>­NCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>N]­Ln­[N­(SiMe<sub>3</sub>)<sub>2</sub>]­(μ-CN)}<sub>3</sub> (Ln = La (<b>7</b>), Nd (<b>8</b>)) through selective σ-bond metathesis reaction of the terminal Ln–N (N­(SiMe<sub>3</sub>)<sub>2</sub>) bond with the Si–C bond of Me<sub>3</sub>SiCN. On the basis of the stoichiometric reactions of complexes <b>2</b>, or <b>3</b> with Me<sub>3</sub>SiCN, complexes <b>2</b>, <b>3</b>, <b>4</b>, <b>5</b>, <b>7</b>, and <b>8</b> as catalysts for cyanosilylation of ketones were investigated. Results indicated that these complexes displayed a high catalytic activity on addition of Me<sub>3</sub>SiCN to ketones, and the activity of the complexes has the order of <b>7</b> ∼ <b>8</b> > <b>2</b> ∼ <b>3</b> ∼ <b>4 ∼ <b>5</b></b>. Thus, complex <b>7</b> or <b>8</b> was proposed as the active catalyst in the catalytic reaction for the precatalysts of <b>2</b> and <b>3</b>

    Synthesis of Bis(NHC)-Based CNC-Pincer Rare-Earth-Metal Amido Complexes and Their Application for the Hydrophosphination of Heterocumulenes

    No full text
    The bis­(NHC) (NHC = N-heterocyclic carbene)-based CNC-pincer rare-earth-metal amido complexes <b>L</b>RE­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>L</b> = 4-CH<sub>3</sub>-2-{R-[N­(CH)<sub>2</sub>CN]}­C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N; <b>L</b><sup><b>2</b></sup>, R = CH<sub>3</sub>; <b>L</b><sup><b>3</b></sup>, R = CH­(CH<sub>3</sub>)<sub>2</sub>) were synthesized and characterized, and their catalytic activities toward hydrophosphination of heterocumulenes were developed. Reactions of bis­[2-(3-methylimidazolium)-4-methylphenyl]­amine diiodide (H<sub>3</sub><b>L</b><sup><b>2</b></sup>I<sub>2</sub>) or bis­[2-(3-isopropylimidazolium)-4-methylphenyl]­amine diiodide (H<sub>3</sub><b>L</b><sup><b>3</b></sup>I<sub>2</sub>) with 5 equiv of NaN­(SiMe<sub>3</sub>)<sub>2</sub> followed by treatment with 1 equiv of RECl<sub>3</sub> in THF at −78 °C afforded the bis­(NHC)-based CNC-pincer rare-earth-metal amido complexes <b>L</b>RE­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>L</b><sup><b>2</b></sup> = [4-CH<sub>3</sub>-2-{CH<sub>3</sub>-[N­(CH)<sub>2</sub>CN]}­C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N, RE = Y (<b>1</b>), Eu (<b>2</b>), Er (<b>3</b>); <b>L</b><sup><b>3</b></sup> = [4-CH<sub>3</sub>-2-{(CH<sub>3</sub>)<sub>2</sub>CH-[N­(CH)<sub>2</sub>CN]}­C<sub>6</sub>H<sub>3</sub>]<sub>2</sub>N, RE = Y (<b>4</b>), Er (<b>5</b>), Yb (<b>6</b>)). Complexes <b>4</b>–<b>6</b> can also be prepared by stepwise reactions of H<sub>3</sub><b>L</b><sup><b>3</b></sup>I<sub>2</sub> with <i>n</i>-BuLi in THF followed by reactions with [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>RE­(μ-Cl)­Li­(THF)<sub>3</sub>. Stepwise reactions of H<sub>3</sub><b>L</b><sup><b>2</b></sup>I<sub>2</sub> with <i>n</i>-BuLi in THF followed by treatment with [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>RE­(μ-Cl)­Li­(THF)<sub>3</sub> generated the bis­(NHC)-based CNC-pincer rare-earth-metal amido complexes <b>L</b><sup><b>2</b></sup>RE­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (RE = Y (<b>1</b>), Er (<b>3</b>)) together with the fused-heterocyclic compound 3,8,9-trimethyl-8a,9-dihydro-8<i>H</i>-benzo­[4,5]­imidazo­[2′,1′:2,3]­imidazo­[1,2-<i>a</i>]­imidazo­[2,1-<i>c</i>]­quinoxaline (<b>7</b>), which formed through carbene C–C and C–N coupling. Attempts to prepare complexes of the type <b>L</b>RE­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> by reaction of H<sub>3</sub><b>L</b><sup><b>3</b></sup>I<sub>2</sub> with [(Me<sub>3</sub>Si)<sub>2</sub>N]<sub>3</sub>Yb­(μ-Cl)­Li­(THF)<sub>3</sub> in THF, however, afforded mixed complexes of the bis­(NHC)-based CNC-pincer ytterbium complex <b>L</b><sup><b>3</b></sup>Yb­[N­(SiMe<sub>3</sub>)<sub>2</sub>]<sub>2</sub> (<b>6</b>) and the unexpected bis­(NHC)-based CNC-pincer monoamido ytterbium iodide <b>L</b><sup><b>3</b></sup>YbI­[N­(SiMe<sub>3</sub>)<sub>2</sub>] (<b>8</b>). Investigation of the catalytic activity of complexes <b>1</b>–<b>6</b> and <b>8</b> indicated that all complexes displayed high activity toward the addition of the phosphine P–H bond to heterocumulenes, producing the corresponding phosphaguanidines, phosphaureas, and phosphathioureas, which represents the first example of bis­(NHC)-based CNC-pincer type rare-earth-metal amido complexes as catalysts for the catalytic addition of the phosphine P–H bond to heterocumulenes with high efficiency in the presence of a low catalyst loading at room temperature

    Synthesis and Characterization of Organo-Rare-Earth Metal Monoalkyl Complexes Supported by Carbon σ‑Bonded Indolyl Ligands: High Specific Isoprene 1,4-Cis Polymerization Catalysts

    No full text
    A series of <i>N</i>-protected 3-imino-functionalized indolyl ligands 1-R-3-(R′NCH)­C<sub>8</sub>H<sub>5</sub>N [R = Bn, R′ = 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>HL</b><sup><b>1</b></sup>); R = CH<sub>3</sub>, R′ = 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (<b>HL</b><sup><b>2</b></sup>); R = Bn, R′ = <sup><i>t</i></sup>Bu (<b>HL</b><sup><b>3</b></sup>)] and 1-CH<sub>3</sub>-2-(2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>NCH)­C<sub>8</sub>H<sub>5</sub>N (<b>HL</b><sup><b>4</b></sup>) was prepared via reactions of <i>N</i>-protected indolyl aldehydes with corresponding amines. The C–H σ-bond metathesis followed by alkane elimination reactions between RE­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> and <b>HL</b><sup><b>1</b></sup><b>–HL</b><sup><b>3</b></sup> afforded the carbon σ-bonded indolyl-ligated rare-earth metal monoalkyl complexes. Reactions of RE­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> with 2 equiv of <b>HL</b><sup><b>1</b></sup> or <b>HL</b><sup><b>2</b></sup> gave the carbon σ-bonded indolyl-ligated rare-earth metal monoalkyl complexes <b>L</b><sup><b>1</b></sup><sub>2</sub>RECH<sub>2</sub>SiMe<sub>3</sub> (RE = Y­(<b>1</b>), Er­(<b>2</b>), Dy­(<b>3</b>)) and <b>L</b><sup><b>2</b></sup><sub>2</sub>RECH<sub>2</sub>SiMe<sub>3</sub> (RE = Y­(<b>5</b>), Er(6), Dy­(<b>7</b>), Yb­(<b>8</b>)), while reaction of Yb­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> with 2 equiv of <b>HL</b><sup><b>1</b></sup> afforded the ytterbium dialkyl complex <b>L</b><sup><b>1</b></sup>Yb­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(thf)<sub>2</sub> (<b>4</b>). Reactions of RE­(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>3</sub>(thf)<sub>2</sub> with <b>HL</b><sup><b>3</b></sup> gave the tris­(heteroaryl) rare-earth metal complexes <b>L</b><sup><b>3</b></sup><sub>3</sub>RE (RE = Y­(<b>9</b>), Er­(<b>10</b>)). In the presence of cocatalysts, the rare-earth metal monoalkyl complexes initiated isoprene polymerization with a high activity (90% conversion of 1000 equiv of isoprene in 25 min) producing polymers with high regio- and stereoselectivity (1,4-cis polymers up to 99%)
    corecore