5,315 research outputs found
Dynamic Designs of Virtual Worlds Using Generative Design Agents
This research aims at developing a different kind of virtual world that is dynamically designed and implemented as needed. Currently, most virtual world designs are considered static. Similar to the physical world, these worlds are pre-defined prior to their use. The resultant environments serve certain purposes but do not take into consideration possible changes to the purposes during their use, changes which often occur when the occupants interact with the environments and with each other. Virtual worlds as networked environments can be flexibly configured and programmed. This flexibility makes it possible to consider virtual world designs in terms of dynamics and autonomy, reflecting the changing needs of different moments. To achieve dynamic designs of virtual worlds, this study applies a computational approach using rational design agents. A Generative Design Agent (GDA) model is developed that specifies computational processes for reasoning and designing in virtual worlds. The GDAs serve as personal design agents to the virtual world occupants. Design formalisms for virtual worlds are also addressed. The design component of a GDA is supported by the application of a generative design grammar. On one hand, generative design grammars serve as the generative force to be applied by the GDAs for virtual world design automation. On the other hand, each grammar defines coherent stylistic characterisations shared by the virtual world designs it generates. The technical outcomes of the research consist of the GDA model and a generative design grammar framework. The framework provides guidelines and strategies to designers for developing generative design grammars that produce different design languages for virtual worlds, rather than predefine every detail of all possible virtual world designs. GDAs monitor the virtual worlds and the various activities that occur in the worlds, interpret the occupants’ needs in the virtual worlds and the state of the worlds based on these observations, hypothesise design goals in order to satisfy these needs, and finally apply generative design grammars to provide virtual world designs for the moment, or initiate other actions in the worlds, according to the current design goals, on behalf of the occupants. The development of the GDA model and the generative design grammar framework provides new perspectives for understanding and developing virtual worlds. The GDA model challenges the conventional way that virtual worlds are designed and implemented, and this leads to dynamic designs of virtual worlds. The generative design grammar framework provides a computational approach to formally defining design languages for virtual worlds
Recommended from our members
Experimental investigations of the role of proximity approximation in near-field radiative transfer
The nature of thermal radiative transfer changes significantly as the nominal gap between two objects becomes comparable to or smaller than the characteristic wavelength given by Wien's displacement law. At larger gaps, conventional theory of blackbody radiation is sufficient to describe the radiative transfer; at smaller gaps, however, wave effects such as evanescent wave tunneling, interference and diffraction render the classical theory invalid. The change in radiative transfer between two objects is most dramatic when they can support electromagnetic surface polaritons because of the high local density of states at the interface between the object and vacuum. When two objects of polar dielectric materials are close enough, the enhanced near-field radiation due to surface phonon polariton tunneling can exceed the blackbody limit by several orders of magnitude. This enhanced radiation at nanoscale has potential applications in energy transfer, heat assisted magnetic recording and near-field radiative cooling.
In recent years, several experiments measuring the enhanced near-field radiation between a micro-sphere and a plane substrate have been reported. To measure the radiative transfer, the magnitude of which can be less than 10 nW, the sensor of choice is the bi-material micro-cantilever. My thesis has focused on two aspects of near-field radiative transfer between a micro-sphere and a substrate: (1) to enable quantitative comparison between experimental measurement and theoretical/numerical prediction of near-field radiative transfer. (2) to develop a comprehensive thermal model for the experimental measurement procedure. To enable the first task, an improved experimental apparatus to measure the near-field radiation between a micro-sphere and a substrate has been developed. In previous experimental apparatuses, radiative transfer was measured between a micro-sphere and a truncated plane surface. This was necessary because of the optical configuration. Our new apparatus overcomes this drawback with a newly designed optical path. With this new apparatus, the experiments are truly between a micro-sphere and an infinite plane. Measurements for micro-spheres with wide range of radii from 2.5 µ; to 25 µ; have been conducted. The experimental measurements are compared to the numerical prediction using the modified proximity proximation. In contrast to van der Waals force and Casimir force measurements in which the proximity approximation agree better when applied to larger spheres, in radiative heat transfer measurements, the modified proximity approximation agree better for smaller spheres. This surprising finding is explained by the difference in nature of radiative transfer and forces. To go along with the improved apparatus, we have also modified the method of data acquisition, calibration procedures and the thermal model for the experiment. In terms of data collection, we can now eliminate the effects of spurious forces; the second change we have implemented in the experiment is that the substrate is translated at a constant velocity, as opposed to discrete steps. We have developed a thermal model for the new experimental procedure
Joint radar-communication waveform designs using signals from multiplexed users
Joint radar-communication designs are exploited in applications where radar and communications systems share the same frequency band or when both radar sensing and information communication functions are required in the same system. Finding a waveform that is suitable for both radar and communication is challenging due to the difference between radar and communication operations. In this paper, we propose a new method of designing dual-functional waveforms for both radar and communication using signals from multiplexed communications users. Specifically, signals from different communications users multiplexed in the time, code or frequency domains across different data bits are linearly combined to generate an overall radar waveform. Three typical radar waveforms are considered. The coefficients of the linear combination are optimized to minimize the mean squared error with or without a constraint on the signal-to-noise ratio (SNR) for the communications signals. Numerical results show that the optimization without SNR constraint can almost perfectly approximate the radar waveform in all the cases considered, giving good dual-functional waveforms for both radar and communication. Also, among different multiplexing techniques, time division multiple access is the best option to approximate the radar waveform, followed by code division multiple access and orthogonal frequency division multiple access
Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants.
Human platelets were identified in tumors by Trousseau in 1865, although their roles in tumor microenvironments have only recently attracted the attention of cancer researchers. In this study we exploit and enhance platelet interactions in tumor microenvironments by introducing tumor-targeting and imaging functions. The first step in repurposing human platelets as vehicles for tumor-targeting was to inhibit platelet-aggregation by cytoplasmic-loading of kabiramide (KabC), a potent inhibitor of actin polymerization and membrane protrusion. KabC-Platelets can accumulate high levels of other membrane-permeable cytoxins and probes, including epidoxorubicin, carboxyfluorescein di-ester and chlorin-e6. Finally, mild reaction conditions were developed to couple tumor-targeting proteins and antibodies to KabC-platelets. Fluorescence microscopy studies showed KabC-platelets, surface-coupled with transferrin and Cy5, bind specifically to RPMI8226 and K562 cells, both of which over-express the transferrin receptor. Repurposed platelets circulate for upto 9-days a feature that increases their chance of interacting with target cells. KabC-platelets, surface-coupled with transferrin and Cy7, or chlorin-e6, and injected in immuno-compromised mice were shown to accumulate specifically in sub-cutaneous and intra-cranial myeloma xenotransplants. The high-contrast, in vivo fluorescence images recorded from repurposed platelets within early-stage myeloma is a consequence in part of their large size (φ~2µm), which allows them to transport 100 to 1000-times more targeting-protein and probe molecules respectively. Human platelets can be configured with a plurality of therapeutic and targeting antibodies to help stage tumor environments for an immunotherapy, or with combinations of therapeutic antibodies and therapeutic agents to target and treat cardiovascular and neurologic diseases
Building information modelling project decision support framework
Building Information Modelling (BIM) is an information technology [IT] enabled approach to managing design data in the AEC/FM (Architecture, Engineering and Construction/ Facilities Management) industry. BIM enables improved interdisciplinary collaboration across distributed teams, intelligent documentation and information retrieval, greater consistency in building data, better conflict detection and enhanced facilities management. Despite the apparent benefits the adoption of BIM in practice has been slow. Workshops with industry focus groups were conducted to identify the industry needs, concerns and expectations from participants who had implemented BIM or were BIM “ready”. Factors inhibiting BIM adoption include lack of training, low business incentives, perception of lack of rewards, technological concerns, industry fragmentation related to uneven ICT adoption practices, contractual matters and resistance to changing current work practice. Successful BIM usage depends on collective adoption of BIM across the different disciplines and support by the client. The relationship of current work practices to future BIM scenarios was identified as an important strategy as the participants believed that BIM cannot be efficiently used with traditional practices and methods. The key to successful implementation is to explore the extent to which current work practices must change. Currently there is a perception that all work practices and processes must adopt and change for effective usage of BIM. It is acknowledged that new roles and responsibilities are emerging and that different parties will lead BIM on different projects. A contingency based approach to the problem of implementation was taken which relies upon integration of BIM project champion, procurement strategy, team capability analysis, commercial software availability/applicability and phase decision making and event analysis. Organizations need to understand: (a) their own work processes and requirements; (b) the range of BIM applications available in the market and their capabilities (c) the potential benefits of different BIM applications and their roles in different phases of the project lifecycle, and (d) collective supply chain adoption capabilities. A framework is proposed to support organizations selection of BIM usage strategies that meet their project requirements. Case studies are being conducted to develop the framework. The results of the preliminary design management case study is presented for contractor led BIM specific to the design and construct procurement strategy
Adopting building information modeling (BIM) as collaboration platform in the design industry
This paper discusses the preliminary findings of an ongoing research project aimed at developing a technological, operational and strategic analysis of adopting BIM in AEC/FM (Architecture-Engineering-Construction/Facility Management) industry as a collaboration tool. Outcomes of the project will provide specifications and guidelines as well as establish industry standards for implementing BIM in practice. This research primarily focuses on BIM model servers as a collaboration platform, and hence the guidelines are aimed at enhancing collaboration capabilities. This paper reports on the findings from: (1) a critical review of latest BIM literature and commercial applications, and (2) workshops with focus groups on changing work-practice, role of technology, current perception and expectations of BIM. Layout for case studies being undertaken is presented. These findings provide a base to develop comprehensive software specifications and national guidelines for BIM with particular emphasis on BIM model servers as collaboration platforms
- …