3,133 research outputs found
Doxorubicin-induced F-actin reorganization in cofilin-1 (nonmuscle) down-regulated CHO AA8 cells.
The actin cytoskeleton plays an important role in many cellular processes, including cell mortality, mitosis, cytokinesis, intracellular transport, endocytosis and secretion but also is involved in gene transcription. The dynamics of the actin cytoskeleton is controlled by different classes of actin-binding proteins (ABPs) which regulate the polymerization of actin filaments. In this report we used siRNA against cofilin-1 (nonmuscle) to demonstrate the effect of cofilin on the nuclear and cytoplasmic actin pools in CHO AA8 cells after exposition to various concentrations of doxorubicin. The immunofluorescence studies showed doxorubicin dose dependent tendency to formation the multinucleated giant cells, but also the increase of fluorescence intensity of cofilin in nuclei of untransfected cells. Induction of cell death with doxorubicin treatment in untransfected cells revealed both mitotic catastrophe (in both lower and higher doxorubicin doses) and apoptosis (mostly in higher doxorubicin doses), whereas among cofilin-1 down-regulated cells we observed only mitotic catastrophe. The results suggest that cofilin has apoptosis-inducing ability and that mitotic catastrophe is independent from F-actin content in cell nucleus. In this point of view we conclude that different mechanisms of chromatin reorganization are involved in these two processes. Moreover, we suppose that apoptosis and mitotic catastrophe are independent from each other
Microstructure of nanocrystalline diamond powders studied by powder diffractometry
High resolution x-ray diffraction peaks of diamond nanosize powders of nominal sizes ranging from 5 to 250 nm were analyzed and provided information on grain structure, average size of crystallites, and concentration of dislocations. Selected samples were heat treated at 1670 K at pressures 2.0 and 5.5 GPa or had surface modified by outgassing, heat treatment at vacuum conditions, and by controlled adsorption of gases. The apparent lattice parameter method was applied to characterize the structure of a shell-core model of nanosize particles. The multiple whole profile fitting provided information on crystallite sizes and density of dislocations. Population of dislocations increased with applied pressure, while strain and interplanar distances in the surface layers decreased. Adsorption of foreign gases on the grain surface modified the structure of the surface layers but did not affect dislocations near the center of the grains
Doxorubicin-induced F-actin reorganization in cofilin-1 (nonmuscle) down-regulated CHO AA8 cells.
The integrated behavioral model of mental health help seeking (IBM-HS): A health services utilization theory of planned behavior for accessing care
This article introduces the integrated behavioral model of mental health help seeking (IBM-HS), a theoretical model for understanding the constructs (e.g., systemic, predisposing, and enabling factors; mental health literacy; illness perceptions; perceived need; stigma; shame; perceived benefits, motivation) that influence people’s decision making around seeking professional mental health care and their ultimate access to formal treatment. The IBM-HS is a help-seeking-specific adaptation of the empirically supported integrated behavioral model and integrative model, which are themselves evolutions of the theory of planned behavior and theory of reasoned action. The IBM-HS posits that help-seeking determinants (e.g., structural forces; cultural influences; past help-seeking experience; evaluated need; mental health perceptions, knowledge, and skills; social support) influence help-seeking beliefs (i.e., outcome beliefs, experiential beliefs, beliefs about others’ expectations, beliefs about others’ behavior, logistical beliefs), which in turn determine their respective help-seeking mechanisms (i.e., attitude, perceived norm, personal agency). These mechanisms collectively influence help-seeking intention, which drives prospective help-seeking behavior, subject to the moderating effects of determinants. Finally, prospective behavior has reciprocal feedback loop effects on certain determinants and beliefs. This article describes the need for the IBM-HS, the model’s constructs and their interrelations, measurement considerations, and how the model can be used by scholarly and applied users to systematically understand people’s intention to seek professional mental health care services and what helps or hinders them from utilizing this care
Nanocrystalline materials studied by powder diffraction line profile analysis
X-ray powder diffraction is a powerful tool for characterising the microstructure of crystalline materials in terms of size and strain. It is widely applied for nanocrystalline materials, especially since other methods, in particular electron microscopy is, on the one hand tedious and time consuming, on the other hand, due to the often metastable states of nanomaterials it might change their microstructures. It is attempted to overview the applications of microstructure characterization by powder diffraction on nanocrystalline metals, alloys, ceramics and carbon base materials. Whenever opportunity is given, the data provided by the X-ray method are compared and discussed together with results of electron microscopy. Since the topic is vast we do not try to cover the entire field
Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV
Proton-proton elastic scattering has been measured by the TOTEM experiment at
the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the
Roman Pot detectors placed as close as seven times the transverse beam size
(sbeam) from the outgoing beams. After careful study of the accelerator optics
and the detector alignment, |t|, the square of four-momentum transferred in the
elastic scattering process, has been determined with an uncertainty of d t =
0.1GeV p|t|. In this letter, first results of the differential cross section
are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential
cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an
exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2,
followed by a significant diffractive minimum at |t| =
(0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the
cross-section exhibits a power law behaviour with an exponent of -7.8_\pm}
0.3stat{\pm}0.1syst. When compared to predictions based on the different
available models, the data show a strong discriminative power despite the small
t-range covered.Comment: 12pages, 5 figures, CERN preprin
First Results from the TOTEM Experiment
The first physics results from the TOTEM experiment are here reported,
concerning the measurements of the total, differential elastic, elastic and
inelastic pp cross-section at the LHC energy of = 7 TeV, obtained
using the luminosity measurement from CMS. A preliminary measurement of the
forward charged particle distribution is also shown.Comment: Conference Proceeding. MPI@LHC 2010: 2nd International Workshop on
Multiple Partonic Interactions at the LHC. Glasgow (UK), 29th of November to
the 3rd of December 201
Elastic Scattering and Total Cross-Section in p+p reactions measured by the LHC Experiment TOTEM at sqrt(s) = 7 TeV
Proton-proton elastic scattering has been measured by the TOTEM experiment at
the CERN Large Hadron Collider at TeV in special runs with the
Roman Pot detectors placed as close to the outgoing beam as seven times the
transverse beam size. The differential cross-section measurements are reported
in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t
values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of
CMS, the total proton-proton cross section at sqrt(s) = 7 TeV is measured to be
(98.3 +- 0.2(stat) +- 2.8(syst)) mb.Comment: Proceedings of the XLI International Symposium on Multiparticle
Dynamics. Accepted for publication in Prog. Theor. Phy
LHC Optics Measurement with Proton Tracks Detected by the Roman Pots of the TOTEM Experiment
Precise knowledge of the beam optics at the LHC is crucial to fulfil the
physics goals of the TOTEM experiment, where the kinematics of the scattered
protons is reconstructed with the near-beam telescopes -- so-called Roman Pots
(RP). Before being detected, the protons' trajectories are influenced by the
magnetic fields of the accelerator lattice. Thus precise understanding of the
proton transport is of key importance for the experiment. A novel method of
optics evaluation is proposed which exploits kinematical distributions of
elastically scattered protons observed in the RPs. Theoretical predictions, as
well as Monte Carlo studies, show that the residual uncertainty of this optics
estimation method is smaller than 0.25 percent.Comment: 20 pages, 11 figures, 5 figures, to be submitted to New J. Phy
- …