71 research outputs found

    Topological spin Hall states, charged skyrmions, and superconductivity in two dimensions

    Full text link
    We study the properties of two dimensional topological spin hall insulators which arise through spontaneous breakdown of spin symmetry in systems that are spin rotation invariant. Such a phase breaks spin rotation but not time reversal symmetry and has a vector order parameter. Skyrmion configurations in this vector order parameter are shown to have electric charge that is twice the electron charge. When the spin Hall order is destroyed by condensation of skyrmions superconductivity results. This may happen either through doping or at fixed filling by tuning interactions to close the skyrmion gap. In the latter case the superconductor- spin Hall insulator quantum phase transition can be second order even though the two phases break distinct symmetries.Comment: 4 pages, typos corrected, added a footnot

    Quantum Disentangled Liquids

    Get PDF
    We propose and explore a new finite temperature phase of translationally invariant multi-component liquids which we call a "Quantum Disentangled Liquid" (QDL) phase. We contemplate the possibility that in fluids consisting of two (or more) species of indistinguishable quantum particles with a large mass ratio, the light particles might "localize" on the heavy particles. We give a precise, formal definition of this Quantum Disentangled Liquid phase in terms of the finite energy density many-particle wavefunctions. While the heavy particles are fully thermalized, for a typical fixed configuration of the heavy particles, the entanglement entropy of the light particles satisfies an area law; this implies that the light particles have not thermalized. Thus, in a QDL phase, thermal equilibration is incomplete, and the canonical assumptions of statistical mechanics are not fully operative. We explore the possibility of QDL in water, with the light proton degrees of freedom becoming "localized" on the oxygen ions. We do not presently know whether a local, generic Hamiltonian can have eigenstates of the QDL form, and if it can not, then the non-thermal behavior discussed here will exist as an interesting crossover phenomena at time scales that diverge as the ratio of the mass of the heavy to the light species also diverges.Comment: 14 page
    • …
    corecore