3,031 research outputs found

    Episodic modulations in supernova radio light curves from luminous blue variable supernova progenitor models

    Full text link
    Ideally, one would like to know which type of core-collapse SNe is produced by different progenitors and the channels of stellar evolution leading to these progenitors. These links have to be very well known to use the observed frequency of different types of SN events for probing the star formation rate and massive star evolution in different types of galaxies. We investigate the link between LBV as SN progenitors and the appearance of episodic radio light curve modulations of the SN event. We use the 20Msun and 25Msun models with rotation at solar metallicity, part of an extended grid of stellar models computed by the Geneva team. At their pre-SN stage, these two models have recently been shown to have spectra similar to those of LBV stars and possibly explode as Type IIb SNe. Based on the wind properties before the explosion, we derive the density structure of their circumstellar medium. This structure is used as input for computing the SN radio light curve. We find that the 20Msun model shows radio light curves with episodic luminosity modulations, similar to those observed in some Type IIb SNe. This occurs because the evolution of the 20Msun model terminates in a region of the HR diagram where radiative stellar winds present strong density variations, caused by the bistability limit. The 25Msun model, ending its evolution in a zone of the HR diagram where no change of the mass-loss rates is expected, presents no such modulations in its radio SN light curve. Our results reinforce the link between SN progenitors and LBV stars. We also confirm the existence of a physical mechanism for a single star to have episodic radio light curve modulations. In the case of the 25Msun progenitors, we do not obtain modulations in the radio light curve, but our models may miss some outbursting behavior in the late stages of massive stars.Comment: 5 pages, 3 figures, accepted by Astronomy & Astrophysics Letter

    Particle dynamics of a cartoon dune

    Get PDF
    The spatio-temporal evolution of a downsized model for a desert dune is observed experimentally in a narrow water flow channel. A particle tracking method reveals that the migration speed of the model dune is one order of magnitude smaller than that of individual grains. In particular, the erosion rate consists of comparable contributions from creeping (low energy) and saltating (high energy) particles. The saltation flow rate is slightly larger, whereas the number of saltating particles is one order of magnitude lower than that of the creeping ones. The velocity field of the saltating particles is comparable to the velocity field of the driving fluid. It can be observed that the spatial profile of the shear stress reaches its maximum value upstream of the crest, while its minimum lies at the downstream foot of the dune. The particle tracking method reveals that the deposition of entrained particles occurs primarily in the region between these two extrema of the shear stress. Moreover, it is demonstrated that the initial triangular heap evolves to a steady state with constant mass, shape, velocity, and packing fraction after one turnover time has elapsed. Within that time the mean distance between particles initially in contact reaches a value of approximately one quarter of the dune basis length

    Spectral atlas of massive stars around He I 10830 A

    Get PDF
    We present a digital atlas of peculiar, high-luminosity massive stars in the near-infrared region (10470-11000 A) at medium resolution (R~7000). The spectra are centered around He I 10830 A, which is formed in the wind of those stars, and is a crucial line to obtain their physical parameters. The instrumental configuration also sampled a rich variety of emission lines of Fe II, Mg II, C I, N I and Pa gamma. Secure identifications for most spectral lines are given, based on synthetic atmosphere models calculated by our group. We also propose that two unidentified absorption features have interstellar and/or circumstellar origin. For the strongest one (10780 A) an empirical calibration between E(B-V) and equivalent width is provided. The atlas displays the spectra of massive stars organized in four categories, namely Be stars, OBA Iape (or luminous blue variables, LBV candidates and ex/dormant LBVs), OB supergiants and Wolf-Rayet stars. For comparison, the photospheric spectra of non emission-line stars are presented. Selected LBVs were observed in different epochs from 2001 to 2004, and their spectral variability reveals that some stars, such as Eta Car, AG Car and HR Car, suffered dramatic spectroscopic changes during this time interval

    Inhomogeneous magnetization in dipolar ferromagnetic liquids

    Full text link
    At high densities fluids of strongly dipolar spherical particles exhibit spontaneous long-ranged orientational order. Typically, due to demagnetization effects induced by the long range of the dipolar interactions, the magnetization structure is spatially inhomogeneous and depends on the shape of the sample. We determine this structure for a cubic sample by the free minimization of an appropriate microscopic density functional using simulated annealing. We find a vortex structure resembling four domains separated by four domain walls whose thickness increases proportional to the system size L. There are indications that for large L the whole configuration scales with the system size. Near the axis of the mainly planar vortex structure the direction of the magnetization escapes into the third dimension or, at higher temperatures, the absolute value of the magnetization is strongly reduced. Thus the orientational order is characterized by two point defects at the top and the bottom of the sample, respectively. The equilibrium structure in an external field and the transition to a homogeneous magnetization for strong fields are analyzed, too.Comment: 17 postscript figures included, submitted to Phys. Rev.

    Ferromagnetic Liquid Thin Films Under Applied Field

    Full text link
    Theoretical calculations, computer simulations and experiments indicate the possible existence of a ferromagnetic liquid state, although definitive experimental evidence is lacking. Should such a state exist, demagnetization effects would force a nontrivial magnetization texture. Since liquid droplets are deformable, the droplet shape is coupled with the magnetization texture. In a thin-film geometry in zero applied field, the droplet has a circular shape and a rotating magnetization texture with a point vortex at the center. We calculate the elongation and magnetization texture of such ferromagnetic thin film liquid droplet confined between two parallel plates under a weak applied magnetic field. The vortex stretches into a domain wall and exchange forces break the reflection symmetry. This behavior contrasts qualitatively and quantitatively with the elongation of paramagnetic thin films.Comment: 10 pages, 4 figures, Submitted to Phys. Rev.
    • …