62 research outputs found
Accuracy of genomic prediction of maternal traits in pigs using Bayesian variable selection methods
publishedVersio
Gene expression profiles in liver of pigs with extreme high and low levels of androstenone
<p>Abstract</p> <p>Background</p> <p>Boar taint is the unpleasant odour and flavour of the meat of uncastrated male pigs that is primarily caused by high levels of androstenone and skatole in adipose tissue. Androstenone is a steroid and its levels are mainly genetically determined. Studies on androstenone metabolism have, however, focused on a limited number of genes. Identification of additional genes influencing levels of androstenone may facilitate implementation of marker assisted breeding practices. In this study, microarrays were used to identify differentially expressed genes and pathways related to androstenone metabolism in the liver from boars with extreme levels of androstenone in adipose tissue.</p> <p>Results</p> <p>Liver tissue samples from 58 boars of the two breeds Duroc and Norwegian Landrace, 29 with extreme high and 29 with extreme low levels of androstenone, were selected from more than 2500 individuals. The samples were hybridised to porcine cDNA microarrays and the 1% most significant differentially expressed genes were considered significant. Among the differentially expressed genes were metabolic phase I related genes belonging to the cytochrome P450 family and the flavin-containing monooxygenase <it>FMO1</it>. Additionally, phase II conjugation genes including UDP-glucuronosyltransferases <it>UGT1A5</it>, <it>UGT2A1 </it>and <it>UGT2B15</it>, sulfotransferase <it>STE</it>, N-acetyltransferase <it>NAT12 </it>and glutathione S-transferase were identified. Phase I and phase II metabolic reactions increase the water solubility of steroids and play a key role in their elimination. Differential expression was also found for genes encoding 17beta-hydroxysteroid dehydrogenases (<it>HSD17B2</it>, <it>HSD17B4</it>, <it>HSD17B11 </it>and <it>HSD17B13</it>) and plasma proteins alpha-1-acid glycoprotein (<it>AGP</it>) and orosomucoid (<it>ORM1</it>). 17beta-hydroxysteroid dehydrogenases and plasma proteins regulate the availability of steroids by controlling the amount of active steroids accessible to receptors and available for metabolism. Differences in the expression of <it>FMO1</it>, <it>NAT12</it>, <it>HSD17B2 </it>and <it>HSD17B13 </it>were verified by quantitative real competitive PCR.</p> <p>Conclusion</p> <p>A number of genes and pathways related to metabolism of androstenone in liver were identified, including new candidate genes involved in phase I oxidation metabolism, phase II conjugation metabolism, and regulation of steroid availability. The study is a first step towards a deeper understanding of enzymes and regulators involved in pathways of androstenone metabolism and may ultimately lead to the discovery of markers to reduce boar taint.</p
Gene expression profiles in testis of pigs with extreme high and low levels of androstenone
<p>Abstract</p> <p>Background:</p> <p>Boar taint is a major obstacle when using uncastrated male pigs for swine production. One of the main compounds causing this taint is androstenone, a pheromone produced in porcine testis. Here we use microarrays to study the expression of thousands of genes simultaneously in testis of high and low androstenone boars. The study allows identification of genes and pathways associated with elevated androstenone levels, which is essential for recognising potential molecular markers for breeding purposes.</p> <p>Results:</p> <p>Testicular tissue was collected from 60 boars, 30 with extreme high and 30 with extreme low levels of androstenone, from each of the two breeds Duroc and Norwegian Landrace. The samples were hybridised to porcine arrays containing 26,877 cDNA clones, detecting 563 and 160 genes that were differentially expressed (p < 0.01) in Duroc and Norwegian Landrace, respectively. Of these significantly up- and down-regulated clones, 72 were found to be common for the two breeds, suggesting the possibility of both general and breed specific mechanisms in regulation of, or response to androstenone levels in boars. Ten genes were chosen for verification of expression patterns by quantitative real competitive PCR and real-time PCR. As expected, our results point towards steroid hormone metabolism and biosynthesis as important biological processes for the androstenone levels, but other potential pathways were identified as well. Among these were oxidoreductase activity, ferric iron binding, iron ion binding and electron transport activities. Genes belonging to the cytochrome P450 and hydroxysteroid dehydrogenase families were highly up-regulated, in addition to several genes encoding different families of conjugation enzymes. Furthermore, a number of genes encoding transcription factors were found both up- and down-regulated. The high number of clones belonging to ferric iron and iron ion binding suggests an importance of these genes, and the association between these pathways and androstenone levels is not previously described.</p> <p>Conclusion:</p> <p>This study contributes to the understanding of the complex genetic system controlling and responding to androstenone levels in pig testis. The identification of new pathways and genes involved in the biosynthesis and metabolism of androstenone is an important first step towards finding molecular markers to reduce boar taint.</p
Cumulus Cell and Oocyte Gene Expression in Prepubertal Gilts and Sows Identifies Cumulus Cells as a Prime Informative Parameter of Oocyte Quality
Cumulus cells (CCs) are pivotal during oocyte development. This study aimed to identify novel marker genes for porcine oocyte quality by examining the expression of selected genes in CCs and oocytes, employing the model of oocytes from prepubertal animals being of reduced quality compared to those from adult animals. Total RNA was extracted either directly after follicle aspiration or after in vitro maturation, followed by RT-qPCR. Immature gilt CCs accumulated BBOX1 transcripts, involved in L-carnitine biosynthesis, to a 14.8-fold higher level (p < 0.05) relative to sows, while for CPT2, participating in fatty acid oxidation, the level was 0.48 (p < 0.05). While showing no differences between gilt and sow CCs after maturation, CPT2 and BBOX1 levels in oocytes were higher in gilts at both time points. The apparent delayed lipid metabolism and reduced accumulation of ALDOA and G6PD transcripts in gilt CCs after maturation, implying downregulation of glycolysis and the pentose phosphate pathway, suggest gilt cumulus–oocyte complexes have inadequate ATP stores and oxidative stress balance compared to sows at the end of maturation. Reduced expression of BBOX1 and higher expression of CPT2 in CCs before maturation and higher expression of G6PD and ALDOA after maturation are new potential markers of oocyte quality.publishedVersio
Follicular fluid steroid hormones and in vitro embryo development in Duroc and Landrace pigs
publishedVersio
Follicular fluid steroid hormones and in vitro embryo development in Duroc and Landrace pigs
publishedVersio
Ovarian characteristics and in vitro nuclear and cytoplasmic oocyte maturation in Duroc and Landrace pigs
Differences in total number of piglets born per litter are observed between the Norwegian Duroc (ND) sire and Norwegian Landrace (NL) dam line. The aim of this study was to evaluate ovarian characteristics, and in vitro nuclear and cytoplasmic oocyte maturation in both breeds. One day after weaning, follicular phase ovaries were collected. Ovary length and weight were measured and the number of follicles (< 3 mm and 3–8 mm) was counted. Cumulus-oocyte complexes (COCs) were collected and matured for 48 hr. To assess cumulus expansion, COC area was analysed at 0 and 20 hr. Nuclear maturation and cortical granule (CG) distribution were analysed at 20 and 48 hr, and total glutathione (GSH) was measured at 48 hr to further elucidate cytoplasmic maturation. In first parity sows, a smaller ovary length and fewer 3 to 8 mm follicles were observed in ND compared to NL. For all sows, ND COCs covered a significantly smaller area at 0 hr, but a higher cumulus expansion ratio was observed at 20 hr compared to NL (364 ± 46% versus. 278 ± 27%, p < 0.001). At 20 hr, more ND oocytes exhibited advanced stages of nuclear maturation, while more NL oocytes showed advanced stages of CG distribution. Nuclear maturation to MII stage at 48 hr did not differ between ND and NL oocytes (90.1% and 87.7%, respectively). Moreover, no significant differences were observed for GSH content or CG distribution after maturation. In conclusion, differences with regard to ovarian characteristics as well as to cumulus expansion, and nuclear and cytoplasmic oocyte maturation at 20 hr were observed between the breeds. Further studies are required to determine if this subsequently affects in vitro fertilization and embryo development.publishedVersio
Effect of two 'progressively motile sperm-oocyte' ratios on porcine in vitro fertilization and embryo development
publishedVersio
- …