52,325 research outputs found

Recommended from our members

### Three-dimensional cometary dust coma modelling in the collisionless regime: strengths and weaknesses

Inverse coma and tail modelling of comets based on the method developed by Finson & Probstein is commonly used to analyse cometary coma images. Models of this type often contain a large number of assumptions that may not be constrained unless wide temporal or spectral coverage is available and the comets are bright and at relatively small geocentric distance. They are used to predict physical parameters, such as the mass distribution of the dust, but rarely give assessments of the accuracy of the estimate. A three-dimensional cometary dust coma model in the collisionless regime has been developed to allow the effectiveness of such models to constrain dust coma properties to be tested. The model is capable of simulating the coma morphology for the following input parameters: the comet nucleus shape, size, rotation, emission function (including active fraction and jets), grain velocity distribution (and dispersion), size distribution, dust production rate, grain material and light scattering from the cometary dust.
Characterization of the model demonstrates that the mass distribution cannot be well constrained as is often assumed; the cumulative mass distribution index ? can only be constrained to within ±0.15. The model is highly sensitive to the input grain terminal velocity distribution so model input can be tested with a large degree of confidence. Complex secondary parameters such as jets, rotation and grain composition all have an effect on the structure of the coma in similar ways, so unique solutions for these parameters cannot be derived from a single optical image alone. Multiple images at a variety of geometries close in time can help constrain these effects.
The model has been applied to photometric observations of comets 126P/IRAS and 46P/Wirtanen to constrain a number of physical properties including the dust production rate and mass distribution index. The derived dust production rate (Qdust) for 46P/Wirtanen was 3+7/1.5 kg s1 at a pre-perihelion heliocentric distance of 1.8 au, and for P/IRAS was 50+100/20 kg s1 at a pre-perihelion heliocentric distance of 1.7 au; both comets exhibited a mass distribution index ? = 0.8 ± 0.15

### On the Complexity of Quantum ACC

For any $q > 1$, let \MOD_q be a quantum gate that determines if the number
of 1's in the input is divisible by $q$. We show that for any $q,t > 1$,
\MOD_q is equivalent to \MOD_t (up to constant depth). Based on the case
$q=2$, Moore \cite{moore99} has shown that quantum analogs of AC$^{(0)}$,
ACC$[q]$, and ACC, denoted QAC$^{(0)}_{wf}$, QACC$[2]$, QACC respectively,
define the same class of operators, leaving $q > 2$ as an open question. Our
result resolves this question, proving that QAC$^{(0)}_{wf} =$ QACC$[q] =$
QACC for all $q$. We also develop techniques for proving upper bounds for QACC
in terms of related language classes. We define classes of languages EQACC,
NQACC and BQACC_{\rats}. We define a notion $\log$-planar QACC operators and
show the appropriately restricted versions of EQACC and NQACC are contained in
P/poly. We also define a notion of $\log$-gate restricted QACC operators and
show the appropriately restricted versions of EQACC and NQACC are contained in
TC$^{(0)}$. To do this last proof, we show that TC$^{(0)}$ can perform iterated
addition and multiplication in certain field extensions. We also introduce the
notion of a polynomial-size tensor graph and show that families of such graphs
can encode the amplitudes resulting from apply an arbitrary QACC operator to an
initial state.Comment: 22 pages, 4 figures This version will appear in the July 2000
Computational Complexity conference. Section 4 has been significantly revised
and many typos correcte

### Radio Images of 3C 58: Expansion and Motion of its Wisp

New 1.4 GHz VLA observations of the pulsar-powered supernova remnant 3C 58
have resulted in the highest-quality radio images of this object to date. The
images show filamentary structure over the body of the nebula. The present
observations were combined with earlier ones from 1984 and 1991 to investigate
the variability of the radio emission on a variety of time-scales. No
significant changes are seen over a 110 day interval. In particular, the upper
limit on the apparent projected velocity of the wisp is 0.05c. The expansion
rate of the radio nebula was determined between 1984 and 2004, and is
0.014+/-0.003%/year, corresponding to a velocity of 630+/-70 km/s along the
major axis. If 3C 58 is the remnant of SN 1181, it must have been strongly
decelerated, which is unlikely given the absence of emission from the supernova
shell. Alternatively, the low expansion speed and a number of other arguments
suggest that 3C 58 may be several thousand years old and not be the remnant of
SN 1181.Comment: 12 pages; accepted for publication in the Astrophysical Journa

Recommended from our members

### Stardust microcrater residue compositional groups

Compositional groups are defined in residue from Stardust craters (1-9 Dc) by qualitative EDS. These compositional groups are being further studied by a FIB-SEM technique to determine representative residue compositions

### Coulomb screening in mesoscopic noise: a kinetic approach

Coulomb screening, together with degeneracy, is characteristic of the
metallic electron gas. While there is little trace of its effects in transport
and noise in the bulk, at mesoscopic scales the electronic fluctuations start
to show appreciable Coulomb correlations. Within a strictly standard Boltzmann
and Fermi-liquid framework, we analyze these phenomena and their relation to
the mesoscopic fluctuation-dissipation theorem, which we prove. We identify two
distinct screening mechanisms for mesoscopic fluctuations. One is the
self-consistent response of the contact potential in a non-uniform system. The
other couples to scattering, and is an exclusively non-equilibrium process.
Contact-potential effects renormalize all thermal fluctuations, at all scales.
Collisional effects are relatively short-ranged and modify non-equilibrium
noise. We discuss ways to detect these differences experimentally.Comment: Source: REVTEX. 16 pp.; 7 Postscript figs. Accepted for publication
in J. Phys.: Cond. Ma

### A Study of Degenerate Four-quark states in SU(2) Lattice Monte Carlo

The energies of four-quark states are calculated for geometries in which the
quarks are situated on the corners of a series of tetrahedra and also for
geometries that correspond to gradually distorting these tetrahedra into a
plane. The interest in tetrahedra arises because they are composed of {\bf
three } degenerate partitions of the four quarks into two two-quark colour
singlets. This is an extension of earlier work showing that geometries with
{\bf two} degenerate partitions (e.g.\ squares) experience a large binding
energy. It is now found that even larger binding energies do not result, but
that for the tetrahedra the ground and first excited states become degenerate
in energy. The calculation is carried out using SU(2) for static quarks in the
quenched approximation with $\beta=2.4$ on a $16^3\times 32$ lattice. The
results are analysed using the correlation matrix between different euclidean
times and the implications of these results are discussed for a model based on
two-quark potentials.Comment: Original Raw PS file replace by a tarred, compressed and uuencoded PS
fil

### What is novel in quantum transport for mesoscopics?

The understanding of mesoscopic transport has now attained an ultimate
simplicity. Indeed, orthodox quantum kinetics would seem to say little about
mesoscopics that has not been revealed - nearly effortlessly - by more popular
means. Such is far from the case, however. The fact that kinetic theory remains
very much in charge is best appreciated through the physics of a quantum point
contact. While discretization of its conductance is viewed as the exclusive
result of coherent, single-electron-wave transmission, this does not begin to
address the paramount feature of all metallic conduction: dissipation. A
perfect quantum point contact still has finite resistance, so its ballistic
carriers must dissipate the energy gained from the applied field. How do they
manage that? The key is in standard many-body quantum theory, and its
conservation principles.Comment: 10 pp, 3 figs. Invited talk at 50th Golden Jubilee DAE Symposium,
BARC, Mumbai, 200

### Ballistic transport is dissipative: the why and how

In the ballistic limit, the Landauer conductance steps of a mesoscopic
quantum wire have been explained by coherent and dissipationless transmission
of individual electrons across a one-dimensional barrier. This leaves untouched
the central issue of conduction: a quantum wire, albeit ballistic, has finite
resistance and so must dissipate energy. Exactly HOW does the quantum wire shed
its excess electrical energy? We show that the answer is provided, uniquely, by
many-body quantum kinetics. Not only does this inevitably lead to universal
quantization of the conductance, in spite of dissipation; it fully resolves a
baffling experimental result in quantum-point-contact noise. The underlying
physics rests crucially upon the action of the conservation laws in these open
metallic systems.Comment: Invited Viewpoint articl

### High-field noise in metallic diffusive conductors

We analyze high-field current fluctuations in degenerate conductors by
mapping the electronic Fermi-liquid correlations at equilibrium to their
semiclassical non-equilibrium form. Our resulting Boltzmann description is
applicable to diffusive mesoscopic wires. We derive a non-equilibrium
connection between thermal fluctuations of the current and resistive
dissipation. In the weak-field limit this is the canonical fluctuation-
dissipation theorem. Away from equilibrium, the connection enables explicit
calculation of the excess ``hot-electron'' contribution to the thermal
spectrum. We show that excess thermal noise is strongly inhibited by Pauli
exclusion. This behaviour is generic to the semiclassical metallic regime.Comment: 13 pp, one fig. Companion paper to cond-mat/9911251. Final version,
to appear in J. Phys.: Cond. Ma

Recommended from our members

### Streaming clumps ejection model and the heterogeneous inner coma of Comet Wild 2

It is modeled that a significant component of the jets of some comets are released as aggregate clumps, which then fragment and shed particles after release, leading to a heterogeneous innermost coma

- …