68,616 research outputs found
Fatigue properties of sheet, bar, and cast metallic materials for cryogenic applications
Cryogenic fatigue and tensile properties for metallic materials are determined in the operating life-time range of ten thousand to ten million cycles at room temperature, at minus 320 degrees F, and at minus 423 degrees F. Results are presented as stress versus number of cycles to failure
Fears and realisations of employment insecurity
We investigate the validity of subjective data expectations of job loss and on the probability of re-employment consequent on job loss, by examining associations between expectations and realisations. We find that subjective expectations data reveal private information about subsequent job loss, the expectations data perform better with numerical descriptors than with ordinal verbal descriptors. On average, employees overestimate the chance of losing their job; while they underestimate the difficulty of finding another job as good as the currently-held one. We recommend that survey items on employment insecurity should be explicit about each risk investigation, and utilise a cardinal probability scale with discrete numerical descriptors
Mesoscopic Noise Theory: Microscopics, or Phenomenology?
We argue, physically and formally, that existing diffusive models of noise
yield inaccurate microscopic descriptions of nonequilibrium current
fluctuations. The theoretical shortfall becomes pronounced in quantum-confined
metallic systems, such as the two-dimensional electron gas. In such systems we
propose a simple experimental test of mesoscopic validity for diffusive
theory's central claim: the smooth crossover between Johnson-Nyquist and shot
noise.Comment: Invited paper, UPoN'99 Conference, Adelaide. 13 pp, no figs. Minor
revisions to text and reference
Recommended from our members
Three-dimensional cometary dust coma modelling in the collisionless regime: strengths and weaknesses
Inverse coma and tail modelling of comets based on the method developed by Finson & Probstein is commonly used to analyse cometary coma images. Models of this type often contain a large number of assumptions that may not be constrained unless wide temporal or spectral coverage is available and the comets are bright and at relatively small geocentric distance. They are used to predict physical parameters, such as the mass distribution of the dust, but rarely give assessments of the accuracy of the estimate. A three-dimensional cometary dust coma model in the collisionless regime has been developed to allow the effectiveness of such models to constrain dust coma properties to be tested. The model is capable of simulating the coma morphology for the following input parameters: the comet nucleus shape, size, rotation, emission function (including active fraction and jets), grain velocity distribution (and dispersion), size distribution, dust production rate, grain material and light scattering from the cometary dust.
Characterization of the model demonstrates that the mass distribution cannot be well constrained as is often assumed; the cumulative mass distribution index ? can only be constrained to within ±0.15. The model is highly sensitive to the input grain terminal velocity distribution so model input can be tested with a large degree of confidence. Complex secondary parameters such as jets, rotation and grain composition all have an effect on the structure of the coma in similar ways, so unique solutions for these parameters cannot be derived from a single optical image alone. Multiple images at a variety of geometries close in time can help constrain these effects.
The model has been applied to photometric observations of comets 126P/IRAS and 46P/Wirtanen to constrain a number of physical properties including the dust production rate and mass distribution index. The derived dust production rate (Qdust) for 46P/Wirtanen was 3+7/1.5 kg s1 at a pre-perihelion heliocentric distance of 1.8 au, and for P/IRAS was 50+100/20 kg s1 at a pre-perihelion heliocentric distance of 1.7 au; both comets exhibited a mass distribution index ? = 0.8 ± 0.15
Radio Images of 3C 58: Expansion and Motion of its Wisp
New 1.4 GHz VLA observations of the pulsar-powered supernova remnant 3C 58
have resulted in the highest-quality radio images of this object to date. The
images show filamentary structure over the body of the nebula. The present
observations were combined with earlier ones from 1984 and 1991 to investigate
the variability of the radio emission on a variety of time-scales. No
significant changes are seen over a 110 day interval. In particular, the upper
limit on the apparent projected velocity of the wisp is 0.05c. The expansion
rate of the radio nebula was determined between 1984 and 2004, and is
0.014+/-0.003%/year, corresponding to a velocity of 630+/-70 km/s along the
major axis. If 3C 58 is the remnant of SN 1181, it must have been strongly
decelerated, which is unlikely given the absence of emission from the supernova
shell. Alternatively, the low expansion speed and a number of other arguments
suggest that 3C 58 may be several thousand years old and not be the remnant of
SN 1181.Comment: 12 pages; accepted for publication in the Astrophysical Journa
- …