368 research outputs found

    Ionized Gas Kinematics At High Resolution. II. Discovery Of A Double Infrared Cluster In II Zw 40

    Get PDF
    The nearby dwarf galaxy II Zw 40 hosts an intense starburst. At the center of the starburst is a bright compact radio and infrared source, thought to be a giant dense H II region containing approximate to 14,000 O stars. Radio continuum images suggest that the compact source is actually a collection of several smaller emission regions. We accordingly use the kinematics of the ionized gas to probe the structure of the radio-infrared emission region. With TEXES on the NASA-IRTF we measured the 10.5 mu m [S IV] emission line with effective spectral resolutions, including thermal broadening, of similar to 25 and similar to 3 km s(-1) and spatial resolution similar to 1 ''. The line profile shows two distinct, spatially coextensive, emission features. The stronger feature is at galactic velocity and has FWHM 47 km s(-1). The second feature is similar to 44 km s(-1) redward of the first and has FWHM 32 km s(-1). We argue that these are two giant embedded clusters, and estimate their masses to be approximate to 3 x 10(5) M-circle dot and approximate to 1.5 x 10(5) M-circle dot. The velocity shift is unexpectedly large for such a small spatial offset. We suggest that it may arise in a previously undetected kinematic feature remaining from the violent merger that formed the galaxy.University of Hawaii NNX-08AE38ANSF AST-0607312NASAAstronom

    Ne II Observations of Gas Motions in Compact and Ultracompact H II Regions

    Get PDF
    We present high spatial and spectral resolution observations of 16 Galactic compact and ultracompact H II regions in the [Ne II] 12.8 mu m fine-structure line. The small thermal width of the neon line and the high dynamic range of the maps provide an unprecedented view of the kinematics of compact and ultracompact H II regions. These observations solidify an emerging picture of the structure of ultracompact H II regions suggested in our earlier studies of G29.96-0.02 and Mon R2 IRS 1; systematic surface flows, rather than turbulence or bulk expansion, dominate the gas motions in the H II regions. The observations show that almost all of the sources have significant (5-20 km s(-1)) velocity gradients and that most of the sources are limb-brightened. In many cases, the velocity pattern implies tangential flow along a dense shell of ionized gas. None of the observed sources clearly fits into the categories of filled expanding spheres, expanding shells, filled blister flows, or cometary H II regions formed by rapidly moving stars. Instead, the kinematics and morphologies of most of the sources lead to a picture of H II regions confined to the edges of cavities created by stellar wind ram pressure and flowing along the cavity surfaces. In sources where the radio continuum and [Ne II] morphologies agree, the majority of the ionic emission is blueshifted relative to nearby molecular gas. This is consistent with sources lying on the near side of their natal clouds being less affected by extinction and with gas motions being predominantly outward, as is expected for pressure-driven flows.NSF AST-0607312, NSF-0708074SOFIA USRA8500-98-008NYSTAR Faculty Development ProgramNASA NNG 04-GG92G, CAN-NCC5-679Lunar and Planetary InstituteAstronom

    TEXES Observations of Pure Rotational H_2 Emission from AB Aurigae

    Get PDF
    We present observations of pure rotational molecular hydrogen emission from the Herbig Ae star, AB Aur. Our observations were made using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility and the Gemini North Observatory. We searched for H_2 emission in the S(1), S(2), and S(4) lines at high spectral resolution and detected all three. By fitting a simple model for the emission in the three transitions, we derive T = 670 ± 40 K and M = 0.52 ± 0.15 M_⊙ for the emitting gas. On the basis of the 8.5 km s^(-1) FWHM of the S(2) line, assuming the emission comes from the circumstellar disk, and with an inclination estimate of the AB Aur system taken from the literature, we place the location for the emission near 18 AU. Comparison of our derived temperature to a disk structure model suggests that UV and X-ray heating are important in heating the disk atmosphere

    Mass Flows in Cometary UCHII Regions

    Full text link
    High spectral and spatial resolution, mid-infrared fine structure line observations toward two ultracompact HII (UCHII) regions (G29.96 -0.02 and Mon R2) allow us to study the structure and kinematics of cometary UCHII regions. In our earlier study of Mon R2, we showed that highly organized mass motions accounted for most of the velocity structure in that UCHII region. In this work, we show that the kinematics in both Mon R2 and G29.96 are consistent with motion along an approximately paraboloidal shell. We model the velocity structure seen in our mapping data and test the stellar wind bow shock model for such paraboloidal like flows. The observations and the simulation indicate that the ram pressures of the stellar wind and ambient interstellar medium cause the accumulated mass in the bow shock to flow along the surface of the shock. A relaxation code reproduces the mass flow's velocity structure as derived by the analytical solution. It further predicts that the pressure gradient along the flow can accelerate ionized gas to a speed higher than that of the moving star. In the original bow shock model, the star speed relative to the ambient medium was considered to be the exit speed of ionized gas in the shell.Comment: 34 pages, including 14 figures and 1 table, to be published in ApJ, September 200

    The Lyman-{\alpha} Sky Background as Observed by New Horizons

    Full text link
    Recent observations of interplanetary medium (IPM) atomic hydrogen Lyman-{\alpha} (Ly{\alpha}) emission in the outer solar system, made with the Alice ultraviolet spectrograph on New Horizons (NH), are presented. The observations include regularly spaced great-circle scans of the sky and pointed observations near the downstream and upstream flow directions of interstellar H atoms. The NH Alice data agree very well with the much earlier Voyager UVS results, after these are reduced by a factor of 2.4 in brightness, in accordance with recent re-analyses. In particular, the falloff of IPM Ly{\alpha} brightness in the upstream-looking direction as a function of spacecraft distance from the Sun is well-matched by an expected 1/r dependence, but with an added constant brightness of ~40 Rayleighs. This additional brightness is a possible signature of the hydrogen wall at the heliopause or of a more distant background. Ongoing observations are planned at a cadence of roughly twice per year.Comment: 21 pages, 5 figures, 1 table, accepted for publication in Geophys. Res. Let

    H2 Mid-IR Pure Rotational Emission from Young Stars: The TEXES/IRTF Survey

    Full text link
    We describe the TEXES survey for mid-IR H2 pure rotational emission from young stars and report early successes. H2 emission is a potential tracer of warm gas in circumstellar disks. Three pure rotational lines are available from the ground: the J=3=>1, J=4=>2, and J=6=>4, transitions at 17.035 microns, 12.279 microns, and 8.025 microns, respectively. Using TEXES at the NASA IRTF 3m, we are midway through a survey of roughly 30 pre-main-sequence stars. To date, detected lines are all resolved, generally with FWHM<10 km/s. Preliminary analysis suggests the gas temperatures are between 400 and 800 K. From the work so far, we conclude that high spectral and spatial resolution are critical to the investigation of H2 in disks.Comment: 6 pages, to appear in Proceedings of the ESO Workshop on "High Resolution Infrared Spectroscopy in Astronomy" held in Garching, Germany, 18-21 November 200
    corecore