510 research outputs found

    Optimised pulse duration for the laser cleaning of oil gilding

    Get PDF
    The laser cleaning problem of gold leaf gilded surfaces was investigated here. Preliminary irradiation tests carried out on pure gold leaf standards evidenced the crucial importance of the laser pulse duration for avoiding serious damages. Optimised pulse duration providing good cleaning results with negligible side effects was then selected and successfully used in the restoration of three Renaissance masterpieces

    The S0_0(0) structure in highly compressed hydrogen and the orientational transition

    Full text link
    A calculation of the rotational S0_0(0) frequencies in high pressure solid para-hydrogen is performed. Convergence of the perturbative series at high density is demonstrated by the calculation of second and third order terms. The results of the theory are compared with the available experimental data to derive the density behaviour of structural parameters. In particular, a strong increase of the value of the lattice constant ratio c/ac/a and of the internuclear distance is determined. Also a decrease of the anisotropic intermolecular potential is observed which is attributed to charge transfer effects. The structural parameters determined at the phase transition may be used to calculate quantum properties of the rotationally ordered phase.Comment: accepted Europhysics Letter

    Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates

    Get PDF
    We study the problem of efficiently computing the derivative of the fixed-point of a parametric nondifferentiable contraction map. This problem has wide applications in machine learning, including hyperparameter optimization, meta-learning and data poisoning attacks. We analyze two popular approaches: iterative differentiation (ITD) and approximate implicit differentiation (AID). A key challenge behind the nonsmooth setting is that the chain rule does not hold anymore. We build upon the work by Bolte et al. (2022), who prove linear convergence of nonsmooth ITD under a piecewise Lipschitz smooth assumption. In the deterministic case, we provide a linear rate for AID and an improved linear rate for ITD which closely match the ones for the smooth setting. We further introduce NSID, a new stochastic method to compute the implicit derivative when the contraction map is defined as the composition of an outer map and an inner map which is accessible only through a stochastic unbiased estimator. We establish rates for the convergence of NSID, encompassing the best available rates in the smooth setting. We also present illustrative experiments confirming our analysis

    Preliminary results of the Italian neutron experimental station INES at ISIS: Archaeometric applications

    Get PDF
    The INES project was sponsored by the CNR Neutron Spectroscopy Advisory Committee, stressing the importance of realizing an Italian Neutron Experimental Station (INES) at the world most powerful pulsed neutron source (ISIS, Rutherford Appleton Laboratory, UK) and evidencing the strategic value that such a test station would assume in the field of applied sciences like, for example, chemistry, material science, Earth science, crystallography, and last, but not least, in the field of science applied to the study of cultural-heritage artifacts

    On the Iteration Complexity of Hypergradient Computation

    Get PDF
    We study a general class of bilevel problems, consisting in the minimization of an upper-level objective which depends on the solution to a parametric fixed-point equation. Important instances arising in machine learning include hyperparameter optimization, meta-learning, and certain graph and recurrent neural networks. Typically the gradient of the upper-level objective (hypergradient) is hard or even impossible to compute exactly, which has raised the interest in approximation methods. We investigate some popular approaches to compute the hypergradient, based on reverse mode iterative differentiation and approximate implicit differentiation. Under the hypothesis that the fixed point equation is defined by a contraction mapping, we present a unified analysis which allows for the first time to quantitatively compare these methods, providing explicit bounds for their iteration complexity. This analysis suggests a hierarchy in terms of computational efficiency among the above methods, with approximate implicit differentiation based on conjugate gradient performing best. We present an extensive experimental comparison among the methods which confirm the theoretical findings

    Preliminary results of the Italian neutron experimental station INES at ISIS: Archaeometric applications

    Get PDF
    The INES project was sponsored by the CNR Neutron Spectroscopy Advisory Committee, stressing the importance of realizing an Italian Neutron Experimental Station (INES) at the world most powerful pulsed neutron source (ISIS, Rutherford Appleton Laboratory, UK) and evidencing the strategic value that such a test station would assume in the field of applied sciences like, for example, chemistry, material science, Earth science, crystallography, and last, but not least, in the field of science applied to the study of cultural-heritage artifacts

    New Eco-gas mixtures for the Extreme Energy Events MRPCs: results and plans

    Full text link
    The Extreme Energy Events observatory is an extended muon telescope array, covering more than 10 degrees both in latitude and longitude. Its 59 muon telescopes are equipped with tracking detectors based on Multigap Resistive Plate Chamber technology with time resolution of the order of a few hundred picoseconds. The recent restrictions on greenhouse gases demand studies for new gas mixtures in compliance with the relative requirements. Tetrafluoropropene is one of the candidates for tetrafluoroethane substitution, since it is characterized by a Global Warming Power around 300 times lower than the gas mixtures used up to now. Several mixtures have been tested, measuring efficiency curves, charge distributions, streamer fractions and time resolutions. Results are presented for the whole set of mixtures and operating conditions, %. A set of tests on a real EEE telescope, with cosmic muons, are being performed at the CERN-01 EEE telescope. The tests are focusing on identifying a mixture with good performance at the low rates typical of an EEE telescope.Comment: 8 pages, 6 figures, proceedings for the "XIV Workshop on Resistive Plate Chambers and Related Detectors" (19-23 February 2018), Puerto Vallarta, Jalisco State, Mexic

    The Extreme Energy Events HECR array: status and perspectives

    Full text link
    The Extreme Energy Events Project is a synchronous sparse array of 52 tracking detectors for studying High Energy Cosmic Rays (HECR) and Cosmic Rays-related phenomena. The observatory is also meant to address Long Distance Correlation (LDC) phenomena: the network is deployed over a broad area covering 10 degrees in latitude and 11 in longitude. An overview of a set of preliminary results is given, extending from the study of local muon flux dependance on solar activity to the investigation of the upward-going component of muon flux traversing the EEE stations; from the search for anisotropies at the sub-TeV scale to the hints for observations of km-scale Extensive Air Shower (EAS).Comment: XXV ECRS 2016 Proceedings - eConf C16-09-04.

    A simulation tool for MRPC telescopes of the EEE project

    Full text link
    The Extreme Energy Events (EEE) Project is mainly devoted to the study of the secondary cosmic ray radiation by using muon tracker telescopes made of three Multigap Resistive Plate Chambers (MRPC) each. The experiment consists of a telescope network mainly distributed across Italy, hosted in different building structures pertaining to high schools, universities and research centers. Therefore, the possibility to take into account the effects of these structures on collected data is important for the large physics programme of the project. A simulation tool, based on GEANT4 and using GEMC framework, has been implemented to take into account the muon interaction with EEE telescopes and to estimate the effects on data of the structures surrounding the experimental apparata.A dedicated event generator producing realistic muon distributions, detailed geometry and microscopic behavior of MRPCs have been included to produce experimental-like data. The comparison between simulated and experimental data, and the estimation of detector resolutions is here presented and discussed
    • …
    corecore