349 research outputs found

    Aberration Corrected Emittance Exchange

    Get PDF
    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by multiple orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a five cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of an EEX line with emittances differing by four orders of magnitude, \textit{i.e.} an initial transverse emittance of 1~pm-rad is exchanged with a longitudinal emittance of 10~nm-rad

    Nano-modulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    Get PDF
    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties

    A Molecular Dynamics Study of Monomer Melt Properties of Cyanate Ester Monomer Melt Properties

    Get PDF
    The objective of this work was to computationally predict the melting temperature and melt properties of thermosetting monomers used in aerospace applications. In this study, we applied an existing voids method by Solca. to examine four cyanate ester monomers with a wide range of melting temperatures. Voids were introduced into some simulations by removal of molecules from lattice positions to lower the free-energy barrier to melting to directly simulate the transition from a stable crystal to amorphous solid and capture the melting temperature. We validated model predictions by comparing melting temperature against previously reported literature values. Additionally, the torsion and orientational order parameters were used to examine the monomers’ freedom of motion to investigate structure–property relationships. Ultimately, the voids method provided reasonable estimates of melting temperature while the torsion and order parameter analysis provided insight into sources of the differing melt properties between the thermosetting monomers. As a whole, the results shed light on how freedom of molecular motions in the monomer melt state may affect melting temperature and can be utilized to inspire the development of thermosetting monomers with optimal monomer melt properties for demanding applications

    Application of MEMS Microphone Array Technology to Airframe Noise Measurements

    Get PDF
    Current generation microphone directional array instrumentation is capable of extracting accurate noise source location and directivity data on a variety of aircraft components, resulting in significant gains in test productivity. However, with this gain in productivity has come the desire to install larger and more complex arrays in a variety of ground test facilities, creating new challenges for the designers of array systems. To overcome these challenges, a research study was initiated to identify and develop hardware and fabrication technologies which could be used to construct an array system exhibiting acceptable measurement performance but at much lower cost and with much simpler installation requirements. This paper describes an effort to fabricate a 128-sensor array using commercially available Micro-Electro-Mechanical System (MEMS) microphones. The MEMS array was used to acquire noise data for an isolated 26%-scale high-fidelity Boeing 777 landing gear in the Virginia Polytechnic Institute and State University Stability Tunnel across a range of Mach numbers. The overall performance of the array was excellent, and major noise sources were successfully identified from the measurements

    High-density Au nanorod optical field-emitter arrays

    Get PDF
    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m[superscript −1], and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer.United States. Defense Advanced Research Projects Agency (Contract N66001-11-1-4192)Gordon and Betty Moore Foundatio

    Adoptive immunotherapy against allogeneic kidney grafts in dogs with stable hematopoietic trichimerism.

    Get PDF
    Dogs given nonmyeloablative conditioning and marrow grafts from 2 dog leukocyte antigen (DLA)-identical littermate donors developed stable trichimerism and stably accepted a subsequent kidney graft from one of the marrow donors without the need for immunosuppression. In this study, we used trichimeras to evaluate strategies for adoptive immunotherapy to solid tumors, using the kidney as a tumor surrogate. Three DLA-identical trichimeric recipients were established by simultaneously infusing marrow from 2 DLA-identical donor dogs into a DLA-identical recipient conditioned with 2 Gy of total body irradiation (TBI) and given a short course of postgraft immunosuppression. After stable hematopoietic engraftment was confirmed, a kidney was transplanted from 1 of the 2 marrow donors into each respective trichimeric recipient. Peripheral blood lymphocytes from each kidney donor were then used to sensitize the alternate marrow donor. The trichimeric recipients were given donor lymphocyte infusions (DLIs) from the sensitized dogs and monitored for chimerism, graft-versus-host disease (GVHD), and kidney rejection. After DLI, we observed both prompt rejection of the transplanted marrow and donor kidney and disappearance of corresponding hematopoietic chimerism. Presumably due to shared minor histocompatibility antigens, host chimerism also disappeared, and GVHD in skin, gut, and liver developed. The native kidneys, although exhibiting lymphocytic infiltration, remained functionally normal. This study demonstrates that under certain experimental conditions, the kidney--an organ ordinarily not involved in graft-versus-host reactions--can be targeted by sensitized donor lymphocytes
    • …