63 research outputs found

    Domain adaptation for sequence labeling using hidden Markov models

    Get PDF
    Most natural language processing systems based on machine learning are not robust to domain shift. For example, a state-of-the-art syntactic dependency parser trained on Wall Street Journal sentences has an absolute drop in performance of more than ten points when tested on textual data from the Web. An efficient solution to make these methods more robust to domain shift is to first learn a word representation using large amounts of unlabeled data from both domains, and then use this representation as features in a supervised learning algorithm. In this paper, we propose to use hidden Markov models to learn word representations for part-of-speech tagging. In particular, we study the influence of using data from the source, the target or both domains to learn the representation and the different ways to represent words using an HMM.Comment: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks (NIPS Workshop) (2013

    A convex relaxation for weakly supervised relation extraction

    Full text link
    International audienceA promising approach to relation extraction, called weak or distant supervision, exploits an existing database of facts as training data, by aligning it to an unlabeled collection of text documents. Using this approach, the task of relation extraction can easily be scaled to hundreds of different relationships. However, distant supervision leads to a challenging multiple instance, multiple label learning problem. Most of the proposed solutions to this problem are based on non-convex formulations, and are thus prone to local minima. In this article, we propose a new approach to the problem of weakly supervised relation extraction, based on discriminative clustering and leading to a convex formulation. We demonstrate that our approach outperforms state-of-the-art methods on the challenging dataset introduced by Riedel et al. (2012)

    Bag of Tricks for Efficient Text Classification

    Full text link
    This paper explores a simple and efficient baseline for text classification. Our experiments show that our fast text classifier fastText is often on par with deep learning classifiers in terms of accuracy, and many orders of magnitude faster for training and evaluation. We can train fastText on more than one billion words in less than ten minutes using a standard multicore~CPU, and classify half a million sentences among~312K classes in less than a minute
    • …