110 research outputs found
Integrating Multiple Analytical Datasets to Compare Metabolite Profiles of Mouse Colonic-Cecal Contents and Feces.
The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of feces in order to determine the suitability of fecal specimens as proxies for assessing the metabolic impact of the gut microbiome. We detected a total of 270 low molecular weight metabolites in colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry (GC-TOF) and ultra-high performance liquid chromatography, quadrapole time-of-flight mass spectrometry (UPLC-Q-TOF). Of that number, 251 (93%) were present in both types of specimen, representing almost all known biochemical pathways related to the amino acid, carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, and cancer-related metabolism. A total of 115 metabolites differed significantly in relative abundance between both colonic-cecal contents and feces. These data comprise the first characterization of relationships among metabolites present in the colonic-cecal contents and feces in a healthy mouse model, and shows that feces can be a useful proxy for assessing the pattern of metabolites to which the colonic mucosum is exposed
Metabolomics in psoriatic disease: pilot study reveals metabolite differences in psoriasis and psoriatic arthritis.
ImportanceWhile "omics" studies have advanced our understanding of inflammatory skin diseases, metabolomics is mostly an unexplored field in dermatology.ObjectiveWe sought to elucidate the pathogenesis of psoriatic diseases by determining the differences in metabolomic profiles among psoriasis patients with or without psoriatic arthritis and healthy controls.DesignWe employed a global metabolomics approach to compare circulating metabolites from patients with psoriasis, psoriasis and psoriatic arthritis, and healthy controls.SettingStudy participants were recruited from the general community and from the Psoriasis Clinic at the University of California Davis in United States.ParticipantsWe examined metabolomic profiles using blood serum samples from 30 patients age and gender matched into three groups: 10 patients with psoriasis, 10 patients with psoriasis and psoriatic arthritis and 10 control participants. Main outcome(s) and measures(s): Metabolite levels were measured calculating the mean peak intensities from gas chromatography time-of-flight mass spectrometry.ResultsMultivariate analyses of metabolomics profiles revealed altered serum metabolites among the study population. Compared to control patients, psoriasis patients had a higher level of alpha ketoglutaric acid (Pso: 288 ± 88;Control209 ± 69; p=0.03), a lower level of asparagine (Pso: 5460 ± 980;Control7260 ± 2100; p=0.02), and a lower level of glutamine (Pso: 86000 ± 20000;Control111000 ± 27000; p=0.02). Compared to control patients, patients with psoriasis and psoriatic arthritis had increased levels of glucuronic acid (Pso + PsA: 638 ± 250;Control347 ± 61; p=0.001). Compared to patients with psoriasis alone, patients with both psoriasis and psoriatic arthritis had a decreased level of alpha ketoglutaric acid (Pso + PsA: 186 ± 80; Pso: 288 ± 88; p=0.02) and an increased level of lignoceric acid (Pso + PsA: 442 ± 280; Pso: 214 ± 64; p=0.02).Conclusions and relevanceThe metabolite differences help elucidate the pathogenesis of psoriasis and psoriatic arthritis and they may provide insights for therapeutic development
Metabolomic profile of patients with left ventricular assist devices: a pilot study
Background: Metabolomic profiling has important diagnostic and prognostic value in heart failure (HF). We investigated whether left ventricular assist device (LVAD) support has an impact on the metabolomic profile of chronic HF patients and if specific metabolic patterns are associated with the development of adverse events.
Methods: We applied untargeted metabolomics to detect and analyze molecules such as amino acids, sugars, fatty acids and other metabolites in plasma samples collected from thirty-three patients implanted with a continuous-flow LVAD. Data were analyzed at baseline, i.e., before implantation of the LVAD, and at long-term follow-up.
Results: Our results reveal significant changes in the metabolomic profile after LVAD implant compared to baseline. In detail, we observed a pre-implant reduction in amino acid metabolism (aminoacyl-tRNA biosynthesis) and increased galactose metabolism, which reversed over the course of support [median follow-up 187 days (63–334 days)]. These changes were associated with improved patient functional capacity driven by LVAD therapy, according to NYHA functional classification of HF (NYHA class I-II: pre-implant =0% of the patients; post-implant =97% of the patients; P<0.001). Moreover, patients who developed adverse thromboembolic events (n=4, 13%) showed a pre-operative metabolomic fingerprint mainly associated with alterations of fatty acid biosynthesis and mitochondrial beta-oxidation of short-chain saturated fatty acids.
Conclusions: Our data provide preliminary evidence that LVAD therapy is associated with changes in the metabolomic profile of HF and suggest the potential use of metabolomics as a new tool to stratify LVAD patients in regard to the risk of adverse events
LC-MS metabolomics of psoriasis patients reveals disease severity-dependent increases in circulating amino acids that are ameliorated by anti-TNFα treatment
Psoriasis is an immune-mediated highly heterogeneous skin disease in which genetic as well as environmental factors play important roles. In spite of the local manifestations of the disease, psoriasis may progress to affect organs deeper than the skin. These effects are documented by epidemiological studies, but they are not yet mechanistically understood. In order to provide insight into the systemic effects of psoriasis, we performed a nontargeted high-resolution LC-MS metabolomics analysis to measure plasma metabolites from individuals with mild or severe psoriasis as well as healthy controls. Additionally, the effects of the anti-TNFα drug Etanercept on metabolic profiles were investigated in patients with severe psoriasis. Our analyses identified significant psoriasis-associated perturbations in three metabolic pathways: (1) arginine and proline, (2) glycine, serine and threonine, and (3) alanine, aspartate, and glutamate. Etanercept treatment reversed the majority of psoriasis-associated trends in circulating metabolites, shifting the metabolic phenotypes of severe psoriasis toward that of healthy controls. Circulating metabolite levels pre- and post-Etanercept treatment correlated with psoriasis area and severity index (PASI) clinical scoring (R(2) = 0.80; p < 0.0001). Although the responsible mechanism(s) are unclear, these results suggest that psoriasis severity-associated metabolic perturbations may stem from increased demand for collagen synthesis and keratinocyte hyperproliferation or potentially the incidence of cachexia. Data suggest that levels of circulating amino acids are useful for monitoring both the severity of disease as well as therapeutic response to anti-TNFα treatment
Proteomic profiling of lung adenocarcinoma indicates heightened DNA repair, antioxidant mechanisms and identifies LASP1 as a potential negative predictor of survival
BackgroundLung cancer is the leading cause of cancer mortality in the United States. Non-small cell lung cancer accounts for 85% of all lung cancers for which adenocarcinoma is the most common histological type. Management of lung cancer is hindered by high false-positive rates due to difficulty resolving between benign and malignant tumors. Better molecular analysis comparing malignant and non-malignant tissues will provide important evidence of the underlying biology contributing to tumorigenesis.MethodsWe utilized a proteomics approach to analyze 38 malignant and non-malignant paired tissue samples obtained from current or former smokers with early stage (Stage IA/IB) lung adenocarcinoma. Statistical mixed effects modeling and orthogonal partial least squares discriminant analysis were used to identify key cancer-associated perturbations in the adenocarcinoma proteome. Identified proteins were subsequently assessed against clinicopathological variables.ResultsTop cancer-associated protein alterations were characterized by: (1) elevations in APEX1, HYOU1 and PDIA4, indicative of increased DNA repair machinery and heightened anti-oxidant defense mechanisms; (2) increased LRPPRC, STOML2, COPG1 and EPRS, suggesting altered tumor metabolism and inflammation; (3) reductions in SPTB, SPTA1 and ANK1 implying dysregulation of membrane integrity; and (4) decreased SLCA41 suggesting altered pH regulation. Increased protein levels of HYOU1, EPRS and LASP1 in NSCLC adenocarcinoma was independently validated by tissue microarray immunohistochemistry. Immunohistochemistry for HYOU1 and EPRS indicated AUCs of 0.952 and 0.841, respectively, for classifying tissue as malignant. Increased LASP1 correlated with poor overall survival (HR 3.66 per unit increase; CI 1.37-9.78; p = 0.01).ConclusionThese results reveal distinct proteomic changes associated with early stage lung adenocarcinoma that may be useful prognostic indicators and therapeutic targets
Recommended from our members
Umbilical cord blood metabolomics reveal distinct signatures of dyslipidemia prior to bronchopulmonary dysplasia and pulmonary hypertension
Pulmonary hypertension (PH) is a common consequence of bronchopulmonary dysplasia (BPD) and remains a primary contributor to increased morbidity and mortality among preterm infants. Unfortunately, at the present time, there are no reliable early predictive markers for BPD-associated PH. Considering its health consequences, understanding in utero perturbations that lead to the development of BPD and BPD-associated PH and identifying early predictive markers is of utmost importance. As part of the discovery phase, we applied a multiplatform metabolomics approach consisting of untargeted and targeted methodologies to screen for metabolic perturbations in umbilical cord blood (UCB) plasma from preterm infants that did ( n = 21; cases) or did not ( n = 21; controls) develop subsequent PH. A total of 1,656 features were detected, of which 407 were annotated by metabolite structures. PH-associated metabolic perturbations were characterized by reductions in major choline-containing phospholipids, such as phosphatidylcholines and sphingomyelins, indicating altered lipid metabolism. The reduction in UCB abundances of major choline-containing phospholipids was confirmed in an independent validation cohort consisting of UCB plasmas from 10 cases and 10 controls matched for gestational age and BPD status. Subanalyses in the discovery cohort indicated that elevations in the oxylipins PGE1, PGE2, PGF2a, 9- and 13-HOTE, 9- and 13-HODE, and 9- and 13-KODE were positively associated with BPD presence and severity. This expansive evaluation of cord blood plasma identifies compounds reflecting dyslipidemia and suggests altered metabolite provision associated with metabolic immaturity that differentiate subjects, both by BPD severity and PH development
Recommended from our members
Adipocytes reprogram cancer cell metabolism by diverting glucose towards glycerol-3-phosphate thereby promoting metastasis
In the tumor microenvironment, adipocytes function as an alternate fuel source for cancer cells. However, whether adipocytes influence macromolecular biosynthesis in cancer cells is unknown. Here we systematically characterized the bidirectional interaction between primary human adipocytes and ovarian cancer (OvCa) cells using multi-platform metabolomics, imaging mass spectrometry, isotope tracing and gene expression analysis. We report that, in OvCa cells co-cultured with adipocytes and in metastatic tumors, a part of the glucose from glycolysis is utilized for the biosynthesis of glycerol-3-phosphate (G3P). Normoxic HIF1α protein regulates the altered flow of glucose-derived carbons in cancer cells, resulting in increased glycerophospholipids and triacylglycerol synthesis. The knockdown of HIF1α or G3P acyltransferase 3 (a regulatory enzyme of glycerophospholipid synthesis) reduced metastasis in xenograft models of OvCa. In summary, we show that, in an adipose-rich tumor microenvironment, cancer cells generate G3P as a precursor for critical membrane and signaling components, thereby promoting metastasis. Targeting biosynthetic processes specific to adipose-rich tumor microenvironments might be an effective strategy against metastasis
Recommended from our members
Exercise plasma metabolomics and xenometabolomics in obese, sedentary, insulin-resistant women: impact of a fitness and weight loss intervention
Insulin resistance has wide-ranging effects on metabolism, but there are knowledge gaps regarding the tissue origins of systemic metabolite patterns and how patterns are altered by fitness and metabolic health. To address these questions, plasma metabolite patterns were determined every 5 min during exercise (30 min, ∼45% of V̇o2peak, ∼63 W) and recovery in overnight-fasted sedentary, obese, insulin-resistant women under controlled conditions of diet and physical activity. We hypothesized that improved fitness and insulin sensitivity following a ∼14-wk training and weight loss intervention would lead to fixed workload plasma metabolomics signatures reflective of metabolic health and muscle metabolism. Pattern analysis over the first 15 min of exercise, regardless of pre- versus postintervention status, highlighted anticipated increases in fatty acid tissue uptake and oxidation (e.g., reduced long-chain fatty acids), diminution of nonoxidative fates of glucose [e.g., lowered sorbitol-pathway metabolites and glycerol-3-galactoside (possible glycerolipid synthesis metabolite)], and enhanced tissue amino acid use (e.g., drops in amino acids; modest increase in urea). A novel observation was that exercise significantly increased several xenometabolites ("non-self" molecules, from microbes or foods), including benzoic acid-salicylic acid-salicylaldehyde, hexadecanol-octadecanol-dodecanol, and chlorogenic acid. In addition, many nonannotated metabolites changed with exercise. Although exercise itself strongly impacted the global metabolome, there were surprisingly few intervention-associated differences despite marked improvements in insulin sensitivity, fitness, and adiposity. These results and previously reported plasma acylcarnitine profiles support the principle that most metabolic changes during submaximal aerobic exercise are closely tethered to absolute ATP turnover rate (workload), regardless of fitness or metabolic health status
- …