546 research outputs found

    Automatic Image Registration in Infrared-Visible Videos using Polygon Vertices

    Full text link
    In this paper, an automatic method is proposed to perform image registration in visible and infrared pair of video sequences for multiple targets. In multimodal image analysis like image fusion systems, color and IR sensors are placed close to each other and capture a same scene simultaneously, but the videos are not properly aligned by default because of different fields of view, image capturing information, working principle and other camera specifications. Because the scenes are usually not planar, alignment needs to be performed continuously by extracting relevant common information. In this paper, we approximate the shape of the targets by polygons and use affine transformation for aligning the two video sequences. After background subtraction, keypoints on the contour of the foreground blobs are detected using DCE (Discrete Curve Evolution)technique. These keypoints are then described by the local shape at each point of the obtained polygon. The keypoints are matched based on the convexity of polygon's vertices and Euclidean distance between them. Only good matches for each local shape polygon in a frame, are kept. To achieve a global affine transformation that maximises the overlapping of infrared and visible foreground pixels, the matched keypoints of each local shape polygon are stored temporally in a buffer for a few number of frames. The matrix is evaluated at each frame using the temporal buffer and the best matrix is selected, based on an overlapping ratio criterion. Our experimental results demonstrate that this method can provide highly accurate registered images and that we outperform a previous related method

    Bag-Level Aggregation for Multiple Instance Active Learning in Instance Classification Problems

    Full text link
    A growing number of applications, e.g. video surveillance and medical image analysis, require training recognition systems from large amounts of weakly annotated data while some targeted interactions with a domain expert are allowed to improve the training process. In such cases, active learning (AL) can reduce labeling costs for training a classifier by querying the expert to provide the labels of most informative instances. This paper focuses on AL methods for instance classification problems in multiple instance learning (MIL), where data is arranged into sets, called bags, that are weakly labeled. Most AL methods focus on single instance learning problems. These methods are not suitable for MIL problems because they cannot account for the bag structure of data. In this paper, new methods for bag-level aggregation of instance informativeness are proposed for multiple instance active learning (MIAL). The \textit{aggregated informativeness} method identifies the most informative instances based on classifier uncertainty, and queries bags incorporating the most information. The other proposed method, called \textit{cluster-based aggregative sampling}, clusters data hierarchically in the instance space. The informativeness of instances is assessed by considering bag labels, inferred instance labels, and the proportion of labels that remain to be discovered in clusters. Both proposed methods significantly outperform reference methods in extensive experiments using benchmark data from several application domains. Results indicate that using an appropriate strategy to address MIAL problems yields a significant reduction in the number of queries needed to achieve the same level of performance as single instance AL methods

    Classification of Incomplete Data Using the Fuzzy ARTMAP Neural Network

    Full text link
    The fuzzy ARTMAP neural network is used to classify data that is incomplete in one or more ways. These include a limited number of training cases, missing components, missing class labels, and missing classes. Modifications for dealing with such incomplete data are introduced, and performance is assessed on an emitter identification task using a data base of radar pulsesDefense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409) (S.G. and M.A.R); National Science Foundation (IRI-97-20333) (S.G.); Natural Sciences and Engineerging Research Council of Canada (E.G.); Office of Naval Research (N00014-95-1-0657

    Familiarity Discrimination of Radar Pulses

    Full text link
    The ARTMAP-FD neural network performs both identification (placing test patterns in classes encountered during training) and familiarity discrimination (judging whether a test pattern belongs to any of the classes encountered during training). The performance of ARTMAP-FD is tested on radar pulse data obtained in the field, and compared to that of the nearest-neighbor-based NEN algorithm and to a k > 1 extension of NEN

    Comparison of Classifiers for Radar Emitter Type Identification

    Full text link
    ARTMAP neural network classifiers are considered for the identification of radar emitter types from their waveform parameters. These classifiers can represent radar emitter type classes with one or more prototypes, perform on-line incremental learning to account for novelty encountered in the field, and process radar pulse streams at high speed, making them attractive for real-time applications such as electronic support measures (ESM). The performance of four ARTMAP variants- ARTMAP (Stage 1), ARTMAP-IC, fuzzy ARTMAP and Gaussian ARTMAP - is assessed with radar data gathered in the field. The k nearest neighbor (kNN) and radial basis function (RDF) classifiers are used for reference. Simulation results indicate that fuzzy ARTMAP and Gaussian ARTMAP achieve an average classification rate consistently higher than that of the other ARTMAP classifers and comparable to that of kNN and RBF. ART-EMAP, ARTMAP-IC and fuzzy ARTMAP require fewer training epochs than Gaussian ARTMAP and RBF, and substantially fewer prototype vectors (thus, smaller physical memory requirements and faster fielded performance) than Gaussian ARTMAP, RBF and kNN. Overall, fuzzy ART MAP performs at least as well as the other classifiers in both accuracy and computational complexity, and better than each of them in at least one of these aspects of performance. Incorporation into fuzzy ARTMAP of the MT- feature of ARTMAP-IC is found to be essential for convergence during on-line training with this data set.Defense Advanced Research Projects Agency and the Office of Naval Research (N000I4-95-1-409 (S.G. and M.A.R.); National Science Foundation (IRI-97-20333) (S.G.); Natural Science and Engineering Research Council of Canada (E.G.); Office of Naval Research (N00014-95-1-0657

    Curriculum semi-supervised segmentation

    Full text link
    This study investigates a curriculum-style strategy for semi-supervised CNN segmentation, which devises a regression network to learn image-level information such as the size of a target region. These regressions are used to effectively regularize the segmentation network, constraining softmax predictions of the unlabeled images to match the inferred label distributions. Our framework is based on inequality constraints that tolerate uncertainties with inferred knowledge, e.g., regressed region size, and can be employed for a large variety of region attributes. We evaluated our proposed strategy for left ventricle segmentation in magnetic resonance images (MRI), and compared it to standard proposal-based semi-supervision strategies. Our strategy leverages unlabeled data in more efficiently, and achieves very competitive results, approaching the performance of full-supervision.Comment: Accepted as paper as MICCAI 2O1
    • …