5,647 research outputs found

    A possible close supermassive black-hole binary in a quasar with optical periodicity

    Full text link
    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic, can be due to a variety of physical mechanisms, and is well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report on the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ±\pm 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of 9\sim9 years. While the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.Comment: 19 pages, 6 figures. Published online by Nature on 7 January 201

    A systematic search for close supermassive black hole binaries in the Catalina Real-Time Transient Survey

    Get PDF
    Hierarchical assembly models predict a population of supermassive black hole (SMBH) binaries. These are not resolvable by direct imaging but may be detectable via periodic variability (or nanohertz frequency gravitational waves). Following our detection of a 5.2 year periodic signal in the quasar PG 1302-102 (Graham et al. 2015), we present a novel analysis of the optical variability of 243,500 known spectroscopically confirmed quasars using data from the Catalina Real-time Transient Survey (CRTS) to look for close (< 0.1 pc) SMBH systems. Looking for a strong Keplerian periodic signal with at least 1.5 cycles over a baseline of nine years, we find a sample of 111 candidate objects. This is in conservative agreement with theoretical predictions from models of binary SMBH populations. Simulated data sets, assuming stochastic variability, also produce no equivalent candidates implying a low likelihood of spurious detections. The periodicity seen is likely attributable to either jet precession, warped accretion disks or periodic accretion associated with a close SMBH binary system. We also consider how other SMBH binary candidates in the literature appear in CRTS data and show that none of these are equivalent to the identified objects. Finally, the distribution of objects found is consistent with that expected from a gravitational wave-driven population. This implies that circumbinary gas is present at small orbital radii and is being perturbed by the black holes. None of the sources is expected to merge within at least the next century. This study opens a new unique window to study a population of close SMBH binaries that must exist according to our current understanding of galaxy and SMBH evolution.Comment: 29 pages, 10 figures, accepted for publication in MNRAS - this version contains extended table and figur

    Understanding extreme quasar optical variability with CRTS: I. Major AGN flares

    Get PDF
    There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in AGN in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900,000 known quasars and high probability quasar candidates, typically lasting 900 days and with a median peak amplitude of Δm=1.25\Delta m = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. (2016) that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disk: superluminous supernovae, tidal disruption events, and mergers of stellar mass black holes.Comment: 25 pages, 18 figures, accepted for publication by MNRA

    Pulmonary artery stiffness in chronic obstructive pulmonary disease (copd) and emphysema: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study

    Get PDF
    Purpose: Chronic obstructive pulmonary disease (COPD) and particularly emphysema are characterized by stiffness of the aorta, due in part to accelerated elastin degradation in the lungs and aorta. Stiffness of the pulmonary arteries (PAs) may also be increased in COPD and emphysema, but data are lacking. We assessed PA stiffness using MRI in patients with COPD and related these measurements to COPD severity and percent emphysema. Materials and Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited 290 participants, age 50–79 years with 10 or more packyears and free of clinical cardiovascular disease. COPD severity were defined on postbronchodilator spirometry by ATS/ERS criteria. Percent emphysema was defined as the percentage of regions of the lung &lt; -950 Hounsfield units on full-lung computed tomography (CT). PA stain was defined by the percent change in cross-sectional PA area between systole and diastole on MRI. Blood flow across the tricuspid and mitral valves was assessed by phase-contrast MRI for determination of the ventricular diastolic dysfunction (E/A ratio). Results: PA strain was reduced in COPD compared with controls (P = 0.002) and was inversely correlated with COPD severity (P = 0.004). PA strain was inversely associated to percent emphysema (P = 0.01). PA strain was also markedly correlated with right ventricular diastolic dysfunction measured by E/A ratios in the fully adjusted mix models (P = 0.02). Conclusion: PA strain is reduced in COPD, related in part to percent emphysema on CT scan, which may have implications for pulmonary small vessel flow and right ventricular function. Level of Evidence: 2 Technical Efficacy: Stage

    The Tilt of the Fundamental Plane: Three-quarters Structural Nonhomology, One-quarter Stellar Population

    Full text link
    The variation of the mass-to-light ratios M/L of early type galaxies as function of their luminosities L is investigated. It is shown that the tilt beta=0.27 (in the B--band) of the fundamental plane relation M/L ~ L^{beta} can be understood as a combination of two effects: about one-quarter (i.e. dbeta =0.07) is a result of systematic variations of the stellar population properties with increasing luminosity. The remaining three-quarters (i.e. dbeta =0.2) can be completely attributed to nonhomology effects that lead to a systematic change of the surface brightness profiles with increasing luminosity. Consequently, the observed tilt in the K-band (beta=0.17) where stellar population effects are negligible, is explained by nonhomology effects alone. After correcting for nonhomology, the mean value of the mass-to-light ratio of elliptical galaxies (M/L_B) is 7.1+-2.8 (1 sigma scatter).Comment: 8 pages, 3 figures, ApJL, 600, 39, minor changes made to match the published versio

    The Zwicky Transient Facility: Surveys and Scheduler

    Get PDF
    We present a novel algorithm for scheduling the observations of time-domain imaging surveys. Our Integer Linear Programming approach optimizes an observing plan for an entire night by assigning targets to temporal blocks, enabling strict control of the number of exposures obtained per field and minimizing filter changes. A subsequent optimization step minimizes slew times between each observation. Our optimization metric self-consistently weights contributions from time-varying airmass, seeing, and sky brightness to maximize the transient discovery rate. We describe the implementation of this algorithm on the surveys of the Zwicky Transient Facility and present its on-sky performance.Comment: Published in PASP Focus Issue on the Zwicky Transient Facility (https://dx.doi.org/10.1088/1538-3873/ab0c2a). 13 Pages, 11 Figure

    Cataclysmic Variables in the First Year of the Zwicky Transient Facility

    Get PDF
    Using selection criteria based on amplitude, time, and color, we have identified 329 objects as known or candidate cataclysmic variables (CVs) during the first year of testing and operation of the Zwicky Transient Facility. Of these, 90 are previously confirmed CVs, 218 are strong candidates based on the shape and color of their light curves obtained during 3–562 days of observation, and the remaining 21 are possible CVs but with too few data points to be listed as good candidates. Almost half of the strong candidates are within 10 deg of the galactic plane, in contrast to most other large surveys that have avoided crowded fields. The available Gaia parallaxes are consistent with sampling the low mass transfer CVs, as predicted by population models. Our follow-up spectra have confirmed Balmer/helium emission lines in 27 objects, with four showing high-excitation He ii emission, including candidates for an AM CVn, a polar, and an intermediate polar. Our results demonstrate that a complete survey of the Galactic plane is needed to accomplish an accurate determination of the number of CVs existing in the Milky Way
    corecore