5,647 research outputs found
Recommended from our members
Vibronic mixing enables ultrafast energy flow in light-harvesting complex II.
Since the discovery of quantum beats in the two-dimensional electronic spectra of photosynthetic pigment-protein complexes over a decade ago, the origin and mechanistic function of these beats in photosynthetic light-harvesting has been extensively debated. The current consensus is that these long-lived oscillatory features likely result from electronic-vibrational mixing, however, it remains uncertain if such mixing significantly influences energy transport. Here, we examine the interplay between the electronic and nuclear degrees of freedom (DoF) during the excitation energy transfer (EET) dynamics of light-harvesting complex II (LHCII) with two-dimensional electronic-vibrational spectroscopy. Particularly, we show the involvement of the nuclear DoF during EET through the participation of higher-lying vibronic chlorophyll states and assign observed oscillatory features to specific EET pathways, demonstrating a significant step in mapping evolution from energy to physical space. These frequencies correspond to known vibrational modes of chlorophyll, suggesting that electronic-vibrational mixing facilitates rapid EET over moderately size energy gaps
A possible close supermassive black-hole binary in a quasar with optical periodicity
Quasars have long been known to be variable sources at all wavelengths. Their
optical variability is stochastic, can be due to a variety of physical
mechanisms, and is well-described statistically in terms of a damped random
walk model. The recent availability of large collections of astronomical time
series of flux measurements (light curves) offers new data sets for a
systematic exploration of quasar variability. Here we report on the detection
of a strong, smooth periodic signal in the optical variability of the quasar PG
1302-102 with a mean observed period of 1,884 88 days. It was identified
in a search for periodic variability in a data set of light curves for 247,000
known, spectroscopically confirmed quasars with a temporal baseline of
years. While the interpretation of this phenomenon is still uncertain, the most
plausible mechanisms involve a binary system of two supermassive black holes
with a subparsec separation. Such systems are an expected consequence of galaxy
mergers and can provide important constraints on models of galaxy formation and
evolution.Comment: 19 pages, 6 figures. Published online by Nature on 7 January 201
A systematic search for close supermassive black hole binaries in the Catalina Real-Time Transient Survey
Hierarchical assembly models predict a population of supermassive black hole
(SMBH) binaries. These are not resolvable by direct imaging but may be
detectable via periodic variability (or nanohertz frequency gravitational
waves). Following our detection of a 5.2 year periodic signal in the quasar PG
1302-102 (Graham et al. 2015), we present a novel analysis of the optical
variability of 243,500 known spectroscopically confirmed quasars using data
from the Catalina Real-time Transient Survey (CRTS) to look for close (< 0.1
pc) SMBH systems. Looking for a strong Keplerian periodic signal with at least
1.5 cycles over a baseline of nine years, we find a sample of 111 candidate
objects. This is in conservative agreement with theoretical predictions from
models of binary SMBH populations. Simulated data sets, assuming stochastic
variability, also produce no equivalent candidates implying a low likelihood of
spurious detections. The periodicity seen is likely attributable to either jet
precession, warped accretion disks or periodic accretion associated with a
close SMBH binary system. We also consider how other SMBH binary candidates in
the literature appear in CRTS data and show that none of these are equivalent
to the identified objects. Finally, the distribution of objects found is
consistent with that expected from a gravitational wave-driven population. This
implies that circumbinary gas is present at small orbital radii and is being
perturbed by the black holes. None of the sources is expected to merge within
at least the next century. This study opens a new unique window to study a
population of close SMBH binaries that must exist according to our current
understanding of galaxy and SMBH evolution.Comment: 29 pages, 10 figures, accepted for publication in MNRAS - this
version contains extended table and figur
Understanding extreme quasar optical variability with CRTS: I. Major AGN flares
There is a large degree of variety in the optical variability of quasars and
it is unclear whether this is all attributable to a single (set of) physical
mechanism(s). We present the results of a systematic search for major flares in
AGN in the Catalina Real-time Transient Survey as part of a broader study into
extreme quasar variability. Such flares are defined in a quantitative manner as
being atop of the normal, stochastic variability of quasars. We have identified
51 events from over 900,000 known quasars and high probability quasar
candidates, typically lasting 900 days and with a median peak amplitude of
mag. Characterizing the flare profile with a Weibull
distribution, we find that nine of the sources are well described by a
single-point single-lens model. This supports the proposal by Lawrence et al.
(2016) that microlensing is a plausible physical mechanism for extreme
variability. However, we attribute the majority of our events to explosive
stellar-related activity in the accretion disk: superluminous supernovae, tidal
disruption events, and mergers of stellar mass black holes.Comment: 25 pages, 18 figures, accepted for publication by MNRA
Pulmonary artery stiffness in chronic obstructive pulmonary disease (copd) and emphysema: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study
Purpose:
Chronic obstructive pulmonary disease (COPD) and particularly emphysema are characterized by stiffness of the aorta, due in part to accelerated elastin degradation in the lungs and aorta. Stiffness of the pulmonary arteries (PAs) may also be increased in COPD and emphysema, but data are lacking. We assessed PA stiffness using MRI in patients with COPD and related these measurements to COPD severity and percent emphysema.
Materials and Methods:
The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited 290 participants, age 50–79 years with 10 or more packyears and free of clinical cardiovascular disease. COPD severity were defined on postbronchodilator spirometry by ATS/ERS criteria. Percent emphysema was defined as the percentage of regions of the lung < -950 Hounsfield units on full-lung computed tomography (CT). PA stain was defined by the percent change in cross-sectional PA area between systole and diastole on MRI. Blood flow across the tricuspid and mitral valves was assessed by phase-contrast MRI for determination of the ventricular diastolic dysfunction (E/A ratio).
Results:
PA strain was reduced in COPD compared with controls (P = 0.002) and was inversely correlated with COPD severity (P = 0.004). PA strain was inversely associated to percent emphysema (P = 0.01). PA strain was also markedly correlated with right ventricular diastolic dysfunction measured by E/A ratios in the fully adjusted mix models (P = 0.02).
Conclusion:
PA strain is reduced in COPD, related in part to percent emphysema on CT scan, which may have implications for pulmonary small vessel flow and right ventricular function.
Level of Evidence: 2
Technical Efficacy: Stage
The Tilt of the Fundamental Plane: Three-quarters Structural Nonhomology, One-quarter Stellar Population
The variation of the mass-to-light ratios M/L of early type galaxies as
function of their luminosities L is investigated. It is shown that the tilt
beta=0.27 (in the B--band) of the fundamental plane relation M/L ~ L^{beta} can
be understood as a combination of two effects: about one-quarter (i.e. dbeta
=0.07) is a result of systematic variations of the stellar population
properties with increasing luminosity. The remaining three-quarters (i.e. dbeta
=0.2) can be completely attributed to nonhomology effects that lead to a
systematic change of the surface brightness profiles with increasing
luminosity. Consequently, the observed tilt in the K-band (beta=0.17) where
stellar population effects are negligible, is explained by nonhomology effects
alone. After correcting for nonhomology, the mean value of the mass-to-light
ratio of elliptical galaxies (M/L_B) is 7.1+-2.8 (1 sigma scatter).Comment: 8 pages, 3 figures, ApJL, 600, 39, minor changes made to match the
published versio
The Zwicky Transient Facility: Surveys and Scheduler
We present a novel algorithm for scheduling the observations of time-domain
imaging surveys. Our Integer Linear Programming approach optimizes an observing
plan for an entire night by assigning targets to temporal blocks, enabling
strict control of the number of exposures obtained per field and minimizing
filter changes. A subsequent optimization step minimizes slew times between
each observation. Our optimization metric self-consistently weights
contributions from time-varying airmass, seeing, and sky brightness to maximize
the transient discovery rate. We describe the implementation of this algorithm
on the surveys of the Zwicky Transient Facility and present its on-sky
performance.Comment: Published in PASP Focus Issue on the Zwicky Transient Facility
(https://dx.doi.org/10.1088/1538-3873/ab0c2a). 13 Pages, 11 Figure
Cataclysmic Variables in the First Year of the Zwicky Transient Facility
Using selection criteria based on amplitude, time, and color, we have identified 329 objects as known or candidate cataclysmic variables (CVs) during the first year of testing and operation of the Zwicky Transient Facility. Of these, 90 are previously confirmed CVs, 218 are strong candidates based on the shape and color of their light curves obtained during 3–562 days of observation, and the remaining 21 are possible CVs but with too few data points to be listed as good candidates. Almost half of the strong candidates are within 10 deg of the galactic plane, in contrast to most other large surveys that have avoided crowded fields. The available Gaia parallaxes are consistent with sampling the low mass transfer CVs, as predicted by population models. Our follow-up spectra have confirmed Balmer/helium emission lines in 27 objects, with four showing high-excitation He ii emission, including candidates for an AM CVn, a polar, and an intermediate polar. Our results demonstrate that a complete survey of the Galactic plane is needed to accomplish an accurate determination of the number of CVs existing in the Milky Way
- …