2,089 research outputs found
Temporal evolution of velocity structures in the solar wind
Generally poor correlations were obtained of solar wind flow speed measurements at one point in the ecliptic plane with measurements at the same point 28 days (one solar rotation) earlier or with measurements at other points in the ecliptic plane separated by 50 deg or more in solar longitude. This is evidence that either the flow speed is a very sensitive function of solar latitude or that temporal processes typically alter the speed of the wind emanating from particular solar regions on a time scale of about 4 days. From a measure of the persistence of the flow speed at the orbit of the earth, it appears that the temporal explanation is more likely to be the correct one
Multiple spacecraft observations of interplanetary shocks: Characteristics of the upstream ULF turbulence
All interplanetary shocks observed by ISEE-3 and either ISEE-1 or ISEE-2 or both in 1978 and 1979 are examined for evidence of upstream waves. In order to characterize the properties of these shocks it is necessary to determine accurate shock normals. An overdetermined set of equations were inverted to obtain shock normals, velocities and error estimates for all these shocks. Tests of the method indicate it is quite reliable. Using these normals the Mach number and angle were between the interplanetary magnetic field and the shock normal for each shock. The upstream waves were separated into two classes: whistler mode precursors which occur at low Mach numbers and upstream turbulence whose amplitude at Mach numbers greater than 1.5 is controlled by the angle of the field to the shock normal. The former waves are right hand circularly polarized and quite monochromatic. The latter waves are more linearly polarized and have a broadband featureless spectrum
Solar cycle variation of real CME latitudes
With the assumption of radial motion and uniform longitudinal distribution of
coronal mass ejections (CMEs), we propose a method to eliminate projection
effects from the apparent observed CME latitude distribution. This method has
been applied to SOHO LASCO data from 1996 January to 2006 December. As a
result, we find that the real CME latitude distribution had the following
characteristics: (1) High-latitude CMEs ( where is
the latitude) constituted 3% of all CMEs and mainly occurred during the time
when the polar magnetic fields reversed sign. The latitudinal drift of the
high-latitude CMEs was correlated with that of the heliospheric current sheet.
(2) 4% of all CMEs occurred in the range .
These mid-latitude CMEs occurred primarily in 2000, near the middle of 2002 and
in 2005, respectively, forming a prominent three-peak structure; (3) The
highest occurrence probability of low-latitude () CMEs was
at the minimum and during the declining phase of the solar cycle. However, the
highest occurrence rate of low-latitude CMEs was at the maximum and during the
declining phase of the solar cycle. The latitudinal evolution of low-latitude
CMEs did not follow the Sp\"{o}rer sunspot law, which suggests that many CMEs
originated outside of active regions.Comment: 4 pages, 4 figures, accepted by ApJ Lette
Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?
Coronal Mass Ejections continuously drag closed magnetic field lines away
from the Sun, adding new flux to the interplanetary magnetic field (IMF). We
propose that the outward-moving blobs that have been observed in helmet
streamers are evidence of ongoing, small-scale reconnection in streamer current
sheets, which may play an important role in the prevention of an indefinite
buildup of the IMF. Reconnection between two open field lines from both sides
of a streamer current sheet creates a new closed field line, which becomes part
of the helmet, and a disconnected field line, which moves outward. The blobs
are formed by plasma from the streamer that is swept up in the trough of the
outward moving field line. We show that this mechanism is supported by
observations from SOHO/LASCO. Additionally, we propose a thorough statistical
study to quantify the contribution of blob formation to the reduction of the
IMF, and indicate how this mechanism may be verified by observations with
SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters;
uses AASTe
Electron heating at interplanetary shocks
Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures. T sub e (d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T sub e (d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T sub p (d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T sub e (d/u) and T sub p (d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons more efficiently than they heat the electrons
On the Cause of Supra-Arcade Downflows in Solar Flares
A model of supra-arcade downflows (SADs), dark low density regions also known
as tadpoles that propagate sunward during solar flares, is presented. It is
argued that the regions of low density are flow channels carved by
sunward-directed outflow jets from reconnection. The solar corona is
stratified, so the flare site is populated by a lower density plasma than that
in the underlying arcade. As the jets penetrate the arcade, they carve out
regions of depleted plasma density which appear as SADs. The present
interpretation differs from previous models in that reconnection is localized
in space but not in time. Reconnection is continuous in time to explain why
SADs are not filled in from behind as they would if they were caused by
isolated descending flux tubes or the wakes behind them due to temporally
bursty reconnection. Reconnection is localized in space because outflow jets in
standard two-dimensional reconnection models expand in the normal (inflow)
direction with distance from the reconnection site, which would not produce
thin SADs as seen in observations. On the contrary, outflow jets in spatially
localized three-dimensional reconnection with an out-of-plane (guide) magnetic
field expand primarily in the out-of-plane direction and remain collimated in
the normal direction, which is consistent with observed SADs being thin.
Two-dimensional proof-of-principle simulations of reconnection with an
out-of-plane (guide) magnetic field confirm the creation of SAD-like depletion
regions and the necessity of density stratification. Three-dimensional
simulations confirm that localized reconnection remains collimated.Comment: 16 pages, 5 figures, accepted to Astrophysical Journal Letters in
August, 2013. This version is the accepted versio
The determination of shock ramp width using the noncoplanar magnetic field component
We determine a simple expression for the ramp width of a collisionless fast
shock, based upon the relationship between the noncoplanar and main magnetic
field components. By comparing this predicted width with that measured during
an observation of a shock, the shock velocity can be determined from a single
spacecraft. For a range of low-Mach, low-beta bow shock observations made by
the ISEE-1 and -2 spacecraft, ramp widths determined from two-spacecraft
comparison and from this noncoplanar component relationship agree within 30%.
When two-spacecraft measurements are not available or are inefficient, this
technique provides a reasonable estimation of scale size for low-Mach shocks.Comment: 6 pages, LaTeX (aguplus + agutex);
packages:amsmath,times,graphicx,float, psfrag,verbatim; 3 postscript figures
called by the file; submitted to Geophys. Res. Let
Ion Charge States in Halo CMEs: What can we Learn about the Explosion?
We describe a new modeling approach to develop a more quantitative
understanding of the charge state distributions of the ions of various elements
detected in situ during halo Coronal Mass Ejection (CME) events by the Advanced
Composition Explorer (ACE) satellite. Using a model CME hydrodynamic evolution
based on observations of CMEs propagating in the plane of the sky and on
theoretical models, we integrate time dependent equations for the ionization
balance of various elements to compare with ACE data. We find that plasma in
the CME ``core'' typically requires further heating following filament
eruption, with thermal energy input similar to the kinetic energy input. This
extra heating is presumably the result of post eruptive reconnection. Plasma
corresponding to the CME ``cavity'' is usually not further ionized, since
whether heated or not, the low density gives freeze-in close the the Sun. The
current analysis is limited by ambiguities in the underlying model CME
evolution. Such methods are likely to reach their full potential when applied
to data to be acquired by STEREO when at optimum separation. CME evolution
observed with one spacecraft may be used to interpret CME charge states
detected by the other.Comment: 20 pages, accepted by Ap
Magnetic Flux Tube Reconnection: Tunneling Versus Slingshot
The discrete nature of the solar magnetic field as it emerges into the corona
through the photosphere indicates that it exists as isolated flux tubes in the
convection zone, and will remain as discrete flux tubes in the corona until it
collides and reconnects with other coronal fields. Collisions of these flux
tubes will in general be three dimensional, and will often lead to
reconnection, both rearranging the magnetic field topology in fundamental ways,
and releasing magnetic energy. With the goal of better understanding these
dynamics, we carry out a set of numerical experiments exploring fundamental
characteristics of three dimensional magnetic flux tube reconnection. We first
show that reconnecting flux tubes at opposite extremes of twist behave very
differently: in some configurations, low twist tubes slingshot while high twist
tubes tunnel. We then discuss a theory explaining these differences: by
assuming helicity conservation during the reconnection one can show that at
high twist, tunneled tubes reach a lower magnetic energy state than slingshot
tubes, whereas at low twist the opposite holds. We test three predictions made
by this theory. 1) We find that the level of twist at which the transition from
slingshot to tunnel occurs is about two to three times higher than predicted on
the basis of energetics and helicity conservation alone, probably because the
dynamics of the reconnection play a large role as well. 2) We find that the
tunnel occurs at all flux tube collision angles predicted by the theory. 3) We
find that the amount of magnetic energy a slingshot or a tunnel reconnection
releases agrees reasonably well with the theory, though at the high
resistivities we have to use for numerical stability, a significant amount of
magnetic energy is lost to diffusion, independent of reconnection.Comment: 21 pages, 15 figures, submitted to Ap
Plasma properties of driver gas following interplanetary shocks observed by ISEE-3
Plasma fluid parameters calculated from solar wind and magnetic field data obtained on ISEE 3 were studied. The characteristic properties of driver gas following interplanetary shocks was determined. Of 54 shocks observed from August 1978 to February 1980, nine contained a well defined driver gas that was clearly identifiable by a discontinuous decrease in the average proton temperature across a tangential discontinuity. While helium enhancements were present in all of nine of these events, only about half of them contained simultaneous changes in the two quantities. Often the He/H ratio changed over a period of minutes. Simultaneous with the drop in proton temperature the helium and electron temperature decreased abruptly. In some cases the proton temperature depression was accompanied by a moderate increase in magnetic field magnitude with an unusually low variance and by an increase in the ratio of parallel to perpendicular temperature. The drive gas usually displayed a bidirectional flow of suprathermal solar wind electrons at higher energies
- …