27,068 research outputs found
Lightning Observations above and below clouds
The quantitative optical characteristics of cloud to ground (CG) and intracloud (IC) lightning above clouds were studied. A data base of a number of pulse paramaters such as energy, rise times, pulse widths and pulse intervals was complied and categorized for first return strokes, subsequent strokes, the intracloud part of CG flashes and IC flashes. It is found that: (1) single stroke CG's are more readily distinguishable from IC flashes than multiple stroke CG's; (2) there is no significant difference between the energy of first and subsequent return stroke pulses; and (3) the pulse rise times and pulse widths are time broadened. Lightning activity in a mesoscale convective weather system (MCS) was examined. The CG flash rates average almost 50 per minute for 7 hours. It is shown that lightning above storms embedded within the MCS IC lightning activity can be much greater than CG activity at certain times in the MCS lifecycle
Phase linear interferometer experiment maintenance and calibration manual
This manual describes the necessary procedures for assuring continuous lightning sferics data collection at Marshall Space Flight Center. The phase linear interferometer experiment is under evaluation as a candidate RF sensor to support the space based optical lightning mapper system
Modeling material failure with a vectorized routine
The computational aspects of modelling material failure in structural wood members are presented with particular reference to vector processing aspects. Wood members are considered to be highly orthotropic, inhomogeneous, and discontinuous due to the complex microstructure of wood material and the presence of natural growth characteristics such as knots, cracks and cross grain in wood members. The simulation of strength behavior of wood members is accomplished through the use of a special purpose finite element/fracture mechanics routine, program STARW (Strength Analysis Routine for Wood). Program STARW employs quadratic finite elements combined with singular crack tip elements in a finite element mesh. Vector processing techniques are employed in mesh generation, stiffness matrix formation, simultaneous equation solution, and material failure calculations. The paper addresses these techniques along with the time and effort requirements needed to convert existing finite element code to a vectorized version. Comparisons in execution time between vectorized and nonvectorized routines are provided
Connecting elders by facilitating mobility
A key aspect of staying connected is the ability to travel and visit friends and family, yet mobile situations often pose difficulties for the older population. In this paper, we discuss how technology can support older people on the move, describing work which we have done and are doing in this area and outlining some of the challenges that lie ahead. We focus on providing support for navigation, which is a key part of travel, and outline some of the results of our work, showing that electronic aids can effectively help older people with this activity
Correlations and fluctuations of a confined electron gas
The grand potential and the response of a phase-coherent confined noninteracting electron gas depend
sensitively on chemical potential or external parameter . We compute
their autocorrelation as a function of , and temperature. The result
is related to the short-time dynamics of the corresponding classical system,
implying in general the absence of a universal regime. Chaotic, diffusive and
integrable motions are investigated, and illustrated numerically. The
autocorrelation of the persistent current of a disordered mesoscopic ring is
also computed.Comment: 12 pages, 1 figure, to appear in Phys. Rev.
Estimating Column Density in Molecular Clouds with FIR and Sub-mm Emission Maps
We have used a numerical simulation of a turbulent cloud to synthesize maps
of the thermal emission from dust at a variety of far-IR and sub-mm
wavelengths. The average column density and external radiation field in the
simulation is well matched to clouds such as Perseus and Ophiuchus. We use
pairs of single-wavelength emission maps to derive the dust color temperature
and column density, and we compare the derived column densities with the true
column density. We demonstrate that longer wavelength emission maps yield less
biased estimates of column density than maps made towards the peak of the dust
emission spectrum. We compare the scatter in the derived column density with
the observed scatter in Perseus and Ophiuchus. We find that while in Perseus
all of the observed scatter in the emission-derived versus the
extinction-derived column density can be attributed to the flawed assumption of
isothermal dust along each line of sight, in Ophiuchus there is additional
scatter above what can be explained by the isothermal assumption. Our results
imply that variations in dust emission properties within a molecular cloud are
not necessarily a major source of uncertainty in column density measurements.Comment: Accepted to ApJ Letter
Grazing-angle scattering of electromagnetic waves in gratings with varying mean parameters: grating eigenmodes
A highly unusual pattern of strong multiple resonances for bulk
electromagnetic waves is predicted and analysed numerically in thick periodic
holographic gratings in a slab with the mean permittivity that is larger than
that of the surrounding media. This pattern is shown to exist in the geometry
of grazing-angle scattering (GAS), that is when the scattered wave (+1
diffracted order) in the slab propagates almost parallel to the slab (grating)
boundaries. The predicted resonances are demonstrated to be unrelated to
resonant generation of the conventional guided modes of the slab. Their
physical explanation is associated with resonant generation of a completely new
type of eigenmodes in a thick slab with a periodic grating. These new slab
eigenmodes are generically related to the grating; they do not exist if the
grating amplitude is zero. The field structure of these eigenmodes and their
dependence on structural and wave parameters is analysed. The results are
extended to the case of GAS of guided modes in a slab with a periodic groove
array of small corrugation amplitude and small variations in the mean thickness
of the slab at the array boundaries.Comment: 16 pages, 6 figure
Ultrafast Charge Transfer at a Quantum Dot/2D Materials Interface Probed by Second Harmonic Generation
Hybrid quantum dot (QD) / transition metal dichalcogenide (TMD)
heterostructures are attractive components of next generation optoelectronic
devices, which take advantage of the spectral tunability of QDs and the charge
and exciton transport properties of TMDs. Here, we demonstrate tunable
electronic coupling between CdSe QDs and monolayer WS using variable length
alkanethiol ligands on the QD surface. Using femtosecond time-resolved second
harmonic generation (SHG) microscopy, we show that electron transfer from
photoexcited CdSe QDs to single-layer WS occurs on ultrafast (50 fs - 1 ps)
timescales. Moreover, in the samples exhibiting the fastest charge transfer
rates ( 50 fs) we observed oscillations in the time-domain signal
corresponding to an acoustic phonon mode of the donor QD, which coherently
modulates the SHG response of the underlying WS layer. These results reveal
surprisingly strong electronic coupling at the QD/TMD interface and demonstrate
the usefulness of time-resolved SHG for exploring ultrafast
electronic-vibrational dynamics in TMD heterostructures
Localization of Electromagnetic Fields in Disordered Fano Metamaterials
We present the first study of disorder in planar metamaterials consisting of
strongly interacting metamolecules, where coupled electric dipole and magnetic
dipole modes give rise to a Fano-type resonant response and show that
positional disorder leads to light localization inherently linked to collective
magnetic dipole excitations. We demonstrate that the magnetic excitation
persists in disordered arrays and results in the formation of "magnetic
hot-spots"
- …