4,985 research outputs found
Higher-Order Contingentism, Part 1: Closure and Generation
This paper is a study of higher-order contingentism – the view, roughly, that it is contingent what properties and propositions there are. We explore the motivations for this view and various ways in which it might be developed, synthesizing and expanding on work by Kit Fine, Robert Stalnaker, and Timothy Williamson. Special attention is paid to the question of whether the view makes sense by its own lights, or whether articulating the view requires drawing distinctions among possibilities that, according to the view itself, do not exist to be drawn. The paper begins with a non-technical exposition of the main ideas and technical results, which can be read on its own. This exposition is followed by a formal investigation of higher-order contingentism, in which the tools of variable-domain intensional model theory are used to articulate various versions of the view, understood as theories formulated in a higher-order modal language. Our overall assessment is mixed: higher-order contingentism can be fleshed out into an elegant systematic theory, but perhaps only at the cost of abandoning some of its original motivations
Counting Incompossibles
We often speak as if there are merely possible people—for example, when we make such claims as that most possible people are never going to be born. Yet most metaphysicians deny that anything is both possibly a person and never born. Since our unreflective talk of merely possible people serves to draw non-trivial distinctions, these metaphysicians owe us some paraphrase by which we can draw those distinctions without committing ourselves to there being merely possible people. We show that such paraphrases are unavailable if we limit ourselves to the expressive resources of even highly infinitary first-order modal languages. We then argue that such paraphrases are available in higher-order modal languages only given certain strong assumptions concerning the metaphysics of properties. We then consider alternative paraphrase strategies, and argue that none of them are tenable. If talk of merely possible people cannot be paraphrased, then it must be taken at face value, in which case it is necessary what individuals there are. Therefore, if it is contingent what individuals there are, then the demands of paraphrase place tight constraints on the metaphysics of properties: either (i) it is necessary what properties there are, or (ii) necessarily equivalent properties are identical, and having properties does not entail even possibly being anything at all
Recommended from our members
Total Number of Alterations in Liquid Biopsies Is an Independent Predictor of Survival in Patients With Advanced Cancers.
PurposeStudies have demonstrated an association between quantity of circulating tumor DNA (ctDNA) and poorer survival. We investigated the relationship between percent ctDNA (%ctDNA), total number of ctDNA alterations, and overall survival (OS) in liquid biopsies.Materials and methodsOverall, 418 patients with blood-based next-generation sequencing (54 to 73 genes) were analyzed. Eligible patients included those who had advanced/metastatic solid tumor malignancies and never received immunotherapy treatment, which may alter the survival curve in patients with high mutational burden.ResultsPatients with a high (≥ 5%) %ctDNA had significantly shorter OS versus those with intermediate (≥ 0.4% to < 5%) or low (< 0.4%) values (median OS, 7.0 v 14.1 v not reached [NR] months, respectively; P < .0001). Patients with a high (≥ 5) total number of alterations had significantly shorter OS versus those with intermediate (≥ 1.46 to < 5), low (< 1.46), or no alterations (median OS, 4.6 v 11.7 v 21.3 v NR months, respectively; P < .0001). The total number of alterations correlated with %ctDNA (r = 0.85; 95% CI, 0.81 to 0.87; P < .0001). However, only an intermediate to high total number of alterations (≥ 1.46) was an independent predictor of worse OS (hazard ratio, 1.96; 95% CI, 1.30 to 2.96; P = .0014; multivariate analysis).ConclusionWe demonstrate that the total number of alterations and %ctDNA have prognostic value and correlate with one another, but only the total number of alterations was independently associated with survival outcomes. Our findings suggest that the total number of alterations in plasma may be an indicator of more aggressive tumor biology and therefore poorer survival
Physics of modes in a differentially rotating system - analysis of the shearing sheet
We analyse the linear non-vortical modes of the shearing sheet, a model compressible two-dimensional fluid system with constant density, constant shear, and Coriolis force. This model has several features found in differentially
rotating systems of interest in astrophysics, such as disc galaxies, accretion tori, planetary rings, protostellar nebulae, and possibly even rotating stars
Formation of Giant Planets by Concurrent Accretion of Solids and Gas inside an Anti-Cyclonic Vortex
We study the formation of a giant gas planet by the core--accretion
gas--capture process, with numerical simulations, under the assumption that the
planetary core forms in the center of an anti-cyclonic vortex. The presence of
the vortex concentrates particles of centimeter to meter size from the
surrounding disk, and speeds up the core formation process. Assuming that a
planet of Jupiter mass is forming at 5 AU from the star, the vortex enhancement
results in considerably shorter formation times than are found in standard
core--accretion gas--capture simulations. Also, formation of a gas giant is
possible in a disk with mass comparable to that of the minimum mass solar
nebula.Comment: 27 pages, 4 figures, ApJ in pres
Observation of a Free-Shercliff-Layer Instability in Cylindrical Geometry
We report on observations of a free-Shercliff-layer instability in a
Taylor-Couette experiment using a liquid metal over a wide range of Reynolds
numbers, . The free Shercliff layer is formed by imposing a
sufficiently strong axial magnetic field across a pair of differentially
rotating axial endcap rings. This layer is destabilized by a hydrodynamic
Kelvin-Helmholtz-type instability, characterized by velocity fluctuations in
the plane. The instability appears with an Elsasser number above
unity, and saturates with an azimuthal mode number which increases with the
Elsasser number. Measurements of the structure agree well with 2D global linear
mode analyses and 3D global nonlinear simulations. These observations have
implications for a range of rotating MHD systems in which similar shear layers
may be produced.Comment: 5 pages, 4 figure
The stability of accretion tori. I. Long-wavelength modes of slender tori
We elucidate the inviscid instabilities of an isentropic torus found previously by Papaloizou & Pringle. The torus is a polytrope of index, n, and has a small ratio of minor radius, ɑ, to orbital radius, r_0. In equilibrium it rotates on cylinders with angular velocity profile Ω,∝r^(-q). Linear modes are proportional to exp i(mØ-wt). For small β≡mα/r_0 , we justify the use of height-averaged equations by appealing to approximate vertical hydrostatic equilibrium. The effective polytropic index for the resulting two-dimensional problem is N≡n+½; thus an
incompressible torus in three dimensions behaves compressibly in two. Height averaged modes obey an ordinary differential equation, which we solve numerically to obtain the growth rate as a function of q, n, and β. The error made
in predicting the growth rate of the actual three-dimensional system is small everywhere along the principal branch even for β~0.5, and is less than 1 per cent
for the fastest-growing mode. We analytically solve the artificial case n=-½, which is two-dimensionally incompressible, and show that it has all the qualitative
features of the general case, except that it does not have a resonance at corotation. In the general case, with n>-½ and q<2, the corotation resonance absorbs energy and angular momentum, so the growing and decaying modes do not occur in complex-conjugate pairs. We solve a second special case, namely n=2-q=0, almost analytically in three dimensions, without height-averaging. Papaloizou & Pringle asserted that this system is stable but we show that there is an unstable mode for small β just as in the other systems. In fact this principal unstable branch, with corotation at the pressure maximum, is qualitatively the same for all n and is essentially independent both of compressibility and of the gradient in vorticity per unit surface density. Thus the modes are not sonic, nor are they
similar to those of the Kelvin-Helmholtz instability. Instead they are composed of two edge waves, akin to surface waves in water although modified by shear and
rotation, coupled across a forbidden region around corotation
Transition temperature of a dilute homogeneous imperfect Bose gas
The leading-order effect of interactions on a homogeneous Bose gas is
theoretically predicted to shift the critical temperature by an amount
\Delta\Tc = # a_{scatt} n^{1/3} T_0 from the ideal gas result T_0, where
a_{scatt} is the scattering length and n is the density. There have been
several different theoretical estimates for the numerical coefficient #. We
claim to settle the issue by measuring the numerical coefficient in a lattice
simulation of O(2) phi^4 field theory in three dimensions---an effective theory
which, as observed previously in the literature, can be systematically matched
to the dilute Bose gas problem to reproduce non-universal quantities such as
the critical temperature. We find # = 1.32 +- 0.02.Comment: 4 pages, submitted to Phys. Rev. Lett; minor changes due to
improvement of analysis in the longer companion pape
Characterization and cloning of fasciclin I and fasciclin II glycoproteins in the grasshopper
Monoclonal antibodies were previously used to identify two glycoproteins, called fasciclin I and II (70 and 95 kDa, respectively), which are expressed on different subsets of axon fascicles in the grasshopper (Schistocerca americana) embryo. Here the monoclonal antibodies were used to purify these two membrane-associated glycoproteins for further characterization. Fasciclin II appears to be an integral membrane protein, where fasciclin I is an extrinsic membrane protein. The amino acid sequences of the amino terminus and fragments of both proteins were determined. Using synthetic oligonucleotide probes and antibody screening, we isolated genomic and cDNA clones. Partial DNA sequences of these clones indicate that they encode fasciclins I and II
- …
