13,968 research outputs found
Entanglement and dynamical phase transition in a spin-orbit-coupled Bose-Einstein condensate
Characterizing quantum phase transitions through quantum correlations has
been deeply developed for a long time, while the connections between dynamical
phase transitions (DPTs) and quantum entanglement is not yet well understood.
In this work, we show that the time-averaged two-mode entanglement in the spin
space reaches a maximal value when it undergoes a DPT induced by external
perturbation in a spin-orbit-coupled Bose-Einstein condensate. We employ the
von Neumann entropy and a correlation-based entanglement criterion as
entanglement measures and find that both of them can infer the existence of
DPT. While the von Neumann entropy works only for a pure state at zero
temperature and requires state tomography to reconstruct, the experimentally
more feasible correlation-based entanglement criterion acts as an excellent
proxy for entropic entanglement and can determine the existence of entanglement
for a mixed state at finite temperature, making itself an excellent indicator
for DPT. Our work provides a deeper understanding about the connection between
DPTs and quantum entanglement, and may allow the detection of DPT via
entanglement become accessible as the examined criterion is suitable for
measuring entanglement.Comment: 9 pages, 6 figure
Origin of the pseudogap and its influence on superconducting state
When holes move in the background of strong antiferromagnetic correlation,
two effects with different spatial scale emerge, leading to a much reduced
hopping integral with an additional phase factor. An effective Hamiltonian is
then proposed to investigate the underdoped cuprates. We argue that the
pseudogap is the consequence of dressed hole moving in the antiferromagnetic
background and has nothing to do with the superconductivity. The momentum
distributions of the gap are qualitatively consistent with the recent ARPES
measurements both in the pseudogap and superconducting state. Two thermal
qualities are further calculated to justify our model. A two-gap scenario is
concluded to describe the relation between the two gaps.Comment: 7 pages, 5 figure
Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering
A practical scheme for the demonstration of perfect one-sided
device-independent quantum secret sharing is proposed. The scheme involves a
three-mode optomechanical system in which a pair of independent cavity modes is
driven by short laser pulses and interact with a movable mirror. We demonstrate
that by tuning the laser frequency to the blue (anti-Stokes) sideband of the
average frequency of the cavity modes, the modes become mutually coherent and
then may collectively steer the mirror mode to a perfect
Einstein-Podolsky-Rosen state. The scheme is shown to be experimentally
feasible, it is robust against the frequency difference between the modes,
mechanical thermal noise and damping, and coupling strengths of the cavity
modes to the mirror.Comment: 9 pages, 4 figure
Effective generation of Ising interaction and cluster states in coupled microcavities
We propose a scheme for realizing the Ising spin-spin interaction and atomic
cluster states utilizing trapped atoms in coupled microcavities. It is shown
that the atoms can interact with each other via the exchange of virtual photons
of the cavities. Through suitably tuning the parameters, an effective Ising
spin-spin interaction can be generated in this optical system, which is used to
produce the cluster states. This scheme does not need the preparation of
initial states of atoms and cavity modes, and is insensitive to cavity decay.Comment: 11pages, 2 figures, Revtex
Fractional Quantum Hall Effect of Hard-Core Bosons in Topological Flat Bands
Recent proposals of topological flat band (TFB) models have provided a new
route to realize the fractional quantum Hall effect (FQHE) without Landau
levels. We study hard-core bosons with short-range interactions in two
representative TFB models, one of which is the well known Haldane model (but
with different parameters). We demonstrate that FQHE states emerge with
signatures of even number of quasi-degenerate ground states on a torus and a
robust spectrum gap separating these states from higher energy spectrum. We
also establish quantum phase diagrams for the filling factor 1/2 and illustrate
quantum phase transitions to other competing symmetry-breaking phases.Comment: 4 pages, 6 figure
A Least Squares Collocation Method for Accuracy Improvement of Mobile LiDAR Systems
In environments that are hostile to Global Navigation Satellites Systems (GNSS), the precision achieved by a mobile light detection and ranging (LiDAR) system (MLS) can deteriorate into the sub-meter or even the meter range due to errors in the positioning and orientation system (POS). This paper proposes a novel least squares collocation (LSC)-based method to improve the accuracy of the MLS in these hostile environments. Through a thorough consideration of the characteristics of POS errors, the proposed LSC-based method effectively corrects these errors using LiDAR control points, thereby improving the accuracy of the MLS. This method is also applied to the calibration of misalignment between the laser scanner and the POS. Several datasets from different scenarios have been adopted in order to evaluate the effectiveness of the proposed method. The results from experiments indicate that this method would represent a significant improvement in terms of the accuracy of the MLS in environments that are essentially hostile to GNSS and is also effective regarding the calibration of misalignment
- …
