487 research outputs found

    Inkjet-printed conductive patterns for physical manipulation of audio signals

    Get PDF
    In this demo paper, we present the realization of a completely aesthetically driven conductive image as a multi-modal music controller. Combining two emerging technologies - rapid prototyping with an off-the-shelf inkjet printer using conductive ink and parametric graphic design, we are able to create an interactive surface that is thin, flat, and flexible. This sensate surface can be conformally wrapped around a simple curved surface, and unlike touch screens, can accommodate complex structures and shapes such as holes on a surface. We present the design and manufacturing flow and discuss the technology behind this multi-modal sensing design. Our work seeks to offer a new dimension of designing sonic interaction with graphic tools, playing and learning music from a visual perspective and performing with expressive physical manipulation

    Low-cost sensor tape for environmental sensing based on roll-to-roll manufacturing process

    Get PDF
    We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing based on roll-to-roll manufacturing processes. We experiment with constructing sensors and electronic connections with low-cost conductive inkjet printed copper traces. Our first attempt is to fabricate humidity sensors by spin-coating conductive polymer on sensor substrates and integrating the design with an embedded system. The humidity sensor was tested in a two-point probe and exhibits the I-V profile of a diode. We demonstrated a working humidity sensor with an impedance variance of 30 kΩ from 99% to 58% RH within 300 seconds under a 1.4 volt bias.Massachusetts Institute of Technology. Media Laborator

    Experiences and challenges in deploying potentially invasive sensor systems for dynamic media applications

    Get PDF
    This paper describes a series of projects that explore a set of dynamic media applications built upon a potentially invasive sensor system - the Ubiquitous Media Portal, featuring high-resolution video and audio capture with user ID/tracking capabilities that we installed throughout our facility. In addition to sensors, the portals provide a display and loudspeaker to locally display information or manifest phenomena from virtual worlds. During an eight-month long period, we implemented four different applications to explore acceptance by our buildingwide users. Our results provide insight into how different levels of information presentation and perceived user control can influence the user acceptance and engagement with such sensor platforms in ubiquitous deployments.Things That Think ConsortiumNokia Research Cente

    A cuttable multi-touch sensor

    Get PDF
    We propose cutting as a novel paradigm for ad-hoc customization of printed electronic components. As a first instantiation, we contribute a printed capacitive multi-touch sensor, which can be cut by the end-user to modify its size and shape. This very direct manipulation allows the end-user to easily make real-world objects and surfaces touch-interactive, to augment physical prototypes and to enhance paper craft. We contribute a set of technical principles for the design of printable circuitry that makes the sensor more robust against cuts, damages and removed areas. This includes novel physical topologies and printed forward error correction. A technical evaluation compares different topologies and shows that the sensor remains functional when cut to a different shape.Deutsche Forschungsgemeinschaft (Cluster of Excellence Multimodal Computing and Interaction, German Federal Excellence Initiative

    Configurable dynamic privacy for pervasive sensor networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 76-79).Ubiquitous computing sensor networks have greatly augmented the functionality of interactive media systems by adding the ability to capture and store activity-related information. Analyzing the information recorded from pervasive sensor networks can provide insight about human behavior for better personalized system services, as well as richer media content and social communication. With these increased capabilities, serious concerns which create great obstacles to the deployment of such network are raised with regard to privacy and boundaries. However, there exist no real data currently about privacy in pervasive media networks and most studies that have been made so far are speculative. This thesis presents the design and implementation of a configurable infrastructure that can protect users' dynamic levels of privacy in a pervasive sensor network. Through an active badge system, users have different options to disable each type of data transmission. This work evaluates approaches for privacy protection through conducting an extensive user study in an actual ubiquitous invasive sensing environment to obtain feedback via sensor system data and questionnaires and correlates that information for future reference in the design of privacy-protected ubiquitous sensor networks. Results from the user study indicated that an active badge for on-site control, especially periodically broadcast RF beacon for privacy control, is the most effective and acceptable method.(cont.) However, it also suggested that if every occupant in the building used this approach to constantly block all data transmission, significant system blinding (on the order of 30 % or more) would be incurred. These results allow a better understanding of what value is assessed to privacy versus capabilities/awareness beyond the current assumptions.by Nan-Wei Gong.S.M

    Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications.

    Get PDF
    Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications

    PrintSense: a versatile sensing technique to support multimodal flexible surface interaction

    Get PDF
    We present a multimodal on-surface and near-surface sensing technique for planar, curved and flexible surfaces. Our technique leverages temporal multiplexing of signals coming from a universal interdigitated electrode design, which is printed as a single conductive layer on a flexible substrate. It supports sensing of touch and proximity input, and moreover is capable of capturing several levels of pressure and flexing. We leverage recent developments in conductive inkjet printing as a way to prototype electrode patterns, and combine this with our hardware module for supporting the full range of sensing methods. As the technique is low-cost and easy to implement, it is particularly well-suited for prototyping touch- and hover-based user interfaces, including curved and deformable ones

    Dynamic privacy management in pervasive sensor networks

    Get PDF
    This paper describes the design and implementation of a dynamic privacy management system aimed at enabling tangible privacy control and feedback in a pervasive sensor network. Our work began with the development of a potentially invasive sensor network (with high resolution video, audio, and motion tracking capabilities) featuring different interactive applications that created incentive for accepting this network as an extension of people’s daily social space. A user study was then conducted to evaluate several privacy management approaches – an active badge system for both online and on-site control, on/off power switches for physically disabling the hardware, and touch screen input control. Results from a user study indicated that an active badge for on-site privacy control is the most preferable method among all provided options. We present a set of results that yield insight into the privacy/benefit tradeoff from various sensing capabilities in pervasive sensor networks and how privacy settings and user behavior relate in these environments.Things That Think Consortiu

    Molecular cloning and tissue expression of the fatty acid-binding protein (Es-FABP) gene in female Chinese mitten crab (Eriocheir sinensis)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fatty acid-binding proteins (FABPs), small cytosolic proteins that function in the uptake and utilization of fatty acids, have been extensively studied in higher vertebrates while invertebrates have received little attention despite similar nutritional requirements during periods of reproductive activity.</p> <p>Results</p> <p>Therefore, a cDNA encoding <it>Eriocheir sinensis </it>FABP (Es-FABP) was cloned based upon EST analysis of a hepatopancreas cDNA library. The full length cDNA was 750 bp and encoded a 131 aa polypeptide that was highly homologous to related genes reported in shrimp. The 9108 bp <it>Es-FABP </it>gene contained four exons that were interrupted by three introns, a genomic organization common among FABP multigene family members in vertebrates. Gene expression analysis, as determined by RT-PCR, revealed the presence of <it>Es-FABP </it>transcripts in hepatopancreas, hemocytes, ovary, gills, muscle, thoracic ganglia, heart, and intestine, but not stomach or eyestalk. Real-time quantitative RT-PCR analysis revealed that <it>Es-FABP </it>expression in ovary, hemocytes, and hepatopancreas was dependent on the status of ovarian development, with peak expression observed in January.</p> <p>Conclusions</p> <p>Evidence provided in the present report supports a role of Es-FABP in lipid transport during the period of rapid ovarian growth in <it>E. sinensis</it>, and indirectly confirms the participation of the hepatopancreas, ovary, and hemocytes in lipid nutrient absorption and utilization processes.</p
    corecore