490 research outputs found
Accelerated Linearized Bregman Method
In this paper, we propose and analyze an accelerated linearized Bregman (ALB)
method for solving the basis pursuit and related sparse optimization problems.
This accelerated algorithm is based on the fact that the linearized Bregman
(LB) algorithm is equivalent to a gradient descent method applied to a certain
dual formulation. We show that the LB method requires
iterations to obtain an -optimal solution and the ALB algorithm
reduces this iteration complexity to while requiring
almost the same computational effort on each iteration. Numerical results on
compressed sensing and matrix completion problems are presented that
demonstrate that the ALB method can be significantly faster than the LB method
Sparse Inverse Covariance Selection via Alternating Linearization Methods
Gaussian graphical models are of great interest in statistical learning.
Because the conditional independencies between different nodes correspond to
zero entries in the inverse covariance matrix of the Gaussian distribution, one
can learn the structure of the graph by estimating a sparse inverse covariance
matrix from sample data, by solving a convex maximum likelihood problem with an
-regularization term. In this paper, we propose a first-order method
based on an alternating linearization technique that exploits the problem's
special structure; in particular, the subproblems solved in each iteration have
closed-form solutions. Moreover, our algorithm obtains an -optimal
solution in iterations. Numerical experiments on both synthetic
and real data from gene association networks show that a practical version of
this algorithm outperforms other competitive algorithms
- …