14 research outputs found
Drug prescription support in dental clinics through drug corpus mining
The rapid increase in the volume and variety of data poses a challenge to safe drug prescription for the dentist. The increasing number of patients that take multiple drugs further exerts pressure on the dentist to make the right decision at point-of-care. Hence, a robust decision support system will enable dentists to make decisions on drug prescription quickly and accurately. Based on the assumption that similar drug pairs have a higher similarity ratio, this paper suggests an innovative approach to obtain the similarity ratio between the drug that the dentist is going to prescribe and the drug that the patient is currently taking. We conducted experiments to obtain the similarity ratios of both positive and negative drug pairs, by using feature vectors generated from term similarities and word embeddings of biomedical text corpus. This model can be easily adapted and implemented for use in a dental clinic to assist the dentist in deciding if a drug is suitable for prescription, taking into consideration the medical profile of the patients. Experimental evaluation of our model’s association of the similarity ratio between two drugs yielded a superior F score of 89%. Hence, such an approach, when integrated within the clinical work flow, will reduce prescription errors and thereby increase the health outcomes of patients
Drug prescription support in dental clinics through drug corpus mining
The rapid increase in the volume and variety of data poses a challenge to safe drug prescription for the dentist. The increasing number of patients that take multiple drugs further exerts pressure on the dentist to make the right decision at point-of-care. Hence, a robust decision support system will enable dentists to make decisions on drug prescription quickly and accurately. Based on the assumption that similar drug pairs have a higher similarity ratio, this paper suggests an innovative approach to obtain the similarity ratio between the drug that the dentist is going to prescribe and the drug that the patient is currently taking. We conducted experiments to obtain the similarity ratios of both positive and negative drug pairs, by using feature vectors generated from term similarities and word embeddings of biomedical text corpus. This model can be easily adapted and implemented for use in a dental clinic to assist the dentist in deciding if a drug is suitable for prescription, taking into consideration the medical profile of the patients. Experimental evaluation of our model’s association of the similarity ratio between two drugs yielded a superior F score of 89%. Hence, such an approach, when integrated within the clinical work flow, will reduce prescription errors and thereby increase the health outcomes of patients
Decision support systems for adoption in dental clinics: a survey
While most dental clinicians use some sort of information system, they are involved with administrative functions, despite the advisory potential of some of these systems. This paper outlines some current decision support systems (DSS) and the common barriers facing dentists in adopting them within their workflow. These barriers include lack of perceived usefulness, complicated social and economic factors, and the difficulty for users to interpret the advice given by the system. A survey of current systems found that although there are systems that suggest treatment options, there is no real-time integration with other knowledge bases. Additionally, advice on drug prescription at point-of-care is absent from such systems, which is a significant omission, in consideration of the fact that disease management and drug prescription are common in the workflow of a dentist. This paper also addresses future trends in the research and development of dental clinical DSS, with specific emphasis on big data, standards and privacy issues to fulfil the vision of a robust, user-friendly and scalable personalised DSS for dentists. The findings of this study will offer strategies in design, research and development of a DSS with sufficient perceived usefulness to attract adoption and integration by dentists within their routine clinical workflow, thus resulting in better health outcomes for patients and increased productivity for the clinic
Mining drug properties for decision support in dental clinics
The rise of polypharmacy requires from health providers an awareness of a patient’s drug profile before prescribing. Existing methods to extract information on drug interactions do not integrate with the patient’s medical history. This paper describes state-of-the-art approaches in extracting the term frequencies of drug properties and combining this knowledge with consideration of the patient’s drug allergies and current medications to decide if a drug is suitable for prescription. Experimental evaluation of our models association of the similarity ratio between two drugs (based on each drug’s term frequencies) with the similarity between them yields a superior accuracy of 79%. Similarity to a drug the patient is allergic to or is currently taking are important considerations as to the suitability of a drug for prescription. Hence, such an approach, when integrated within the clinical workflow, will reduce prescription errors thereby increasing the health outcome of the patient
Mining health knowledge graph for health risk prediction
Nowadays classification models have been widely adopted in healthcare, aiming at supporting practitioners for disease diagnosis and human error reduction. The challenge is utilising effective methods to mine real-world data in the medical domain, as many different models have been proposed with varying results. A large number of researchers focus on the diversity problem of real-time data sets in classification models. Some previous works developed methods comprising of homogeneous graphs for knowledge representation and then knowledge discovery. However, such approaches are weak in discovering different relationships among elements. In this paper, we propose an innovative classification model for knowledge discovery from patients’ personal health repositories. The model discovers medical domain knowledge from the massive data in the National Health and Nutrition Examination Survey (NHANES). The knowledge is conceptualised in a heterogeneous knowledge graph. On the basis of the model, an innovative method is developed to help uncover potential diseases suffered by people and, furthermore, to classify patients’ health risk. The proposed model is evaluated by comparison to a baseline model also built on the NHANES data set in an empirical experiment. The performance of proposed model is promising. The paper makes significant contributions to the advancement of knowledge in data mining with an innovative classification model specifically crafted for domain-based data. In addition, by accessing the patterns of various observations, the research contributes to the work of practitioners by providing a multifaceted understanding of individual and public health
A study of drug interaction for personalised decision support in dental clinics
While most dental clinicians use some sort of information system, they are mainly for administrative purposes, with a noticeable lack in advisory features such as decision support in clinical situations. It will be exciting to see more research done to enable a robust system that can fit within the clinical workflow of the dentist to be used as a diagnostic tool at point-of-care, especially in drug prescription. With this motivation in mind, this paper proposes a model to store interactive drug-pairs and other useful information such as side-effects of the drugs. By traversing through these drug- pairs, potential interactions can be highlighted to the dentist by considering the personalised medical and drug profiles of the patient. This will enhance the potential for seamless integration of a robust, intelligent and scalable diagnostic tool within the clinical workflow of a dental clinic, thereby reducing prescription errors and increasing productivity of the dental practic