57 research outputs found

    Deep Cognitive Neural Network (DCNN)

    Get PDF
    Embodiments of the present systems and methods may provide a more efficient and low-powered cognitive computational platform utilizing a deep cognitive neural network (DCNN), incorporating an architecture that integrates convolutional feedforward and recurrent networks , and replaces multi - layer perceptron (MLP) based sigmoidal neural structures with a queuing theory-driven design. For example, in an embodiment, a circuit may comprise a plurality of layers of neural network circuitry, each layer comprising a plurality of neuron circuits, each neuron comprising a plurality of computational circuits, and each neuron connected to a plurality of other neurons in the same layer by synapse circuitry, wherein the plurality of layers of neural network circuitry are adapted to process symbolic and conceptual information.United State

    DNN Driven Speaker Independent Audio-Visual Mask Estimation for Speech Separation

    Get PDF
    Human auditory cortex excels at selectively suppressing background noise to focus on a target speaker. The process of selective attention in the brain is known to contextually exploit the available audio and visual cues to better focus on target speaker while filtering out other noises. In this study, we propose a novel deep neural network (DNN) based audiovisual (AV) mask estimation model. The proposed AV mask estimation model contextually integrates the temporal dynamics of both audio and noise-immune visual features for improved mask estimation and speech separation. For optimal AV features extraction and ideal binary mask (IBM) estimation, a hybrid DNN architecture is exploited to leverages the complementary strengths of a stacked long short term memory (LSTM) and convolution LSTM network. The comparative simulation results in terms of speech quality and intelligibility demonstrate significant performance improvement of our proposed AV mask estimation model as compared to audio-only and visual-only mask estimation approaches for both speaker dependent and independent scenarios

    Robust Real-time Audio-Visual Speech Enhancement based on DNN and GAN

    Get PDF
    The human auditory cortex contextually integrates audio-visual (AV) cues to better understand speech in a cocktail party situation. Recent studies have shown that AV speech enhancement (SE) models can significantly improve speech quality and intelligibility in low signal-to-noise ratios ( SNR < −5dB ) environments compared to audio-only (A-only) SE models. However, despite substantial research in the area of AV SE, development of real-time processing models that can generalise across various types of visual and acoustic noises remains a formidable technical challenge. This paper introduces a novel framework for low-latency, speaker-independent AV SE. The proposed framework is designed to generalise to visual and acoustic noises encountered in real world settings. In particular, a generative adversarial network (GAN) is proposed to address the issue of visual speech noise including poor lighting in real noisy environments. In addition, a novel real-time AV SE based on a deep neural network is proposed. The model leverages the enhanced visual speech from the GAN to deliver robust SE. The effectiveness of the proposed framework is evaluated on synthetic AV datasets using objective speech quality and intelligibility metrics. Furthermore, subjective listening tests are conducted using real noisy AV corpora. The results demonstrate that the proposed real-time AV SE framework improves the mean opinion score by 20% as compared to state-of-the-art SE approaches including recent DNN based AV SE models

    Adopting Transition Point Technique for Persian Sentiment Analysis

    Get PDF
    Sentiment analysis is used to analyses people’s opinions, views and emotions towards different entities such as products, organizations, companies and events. People’s opinions are important for most others during their decision-making process. For example, if someone wants to buy a product, they might want to know more about that product and the experiences of others with that product. Sentiment analysis is able to classify the reviews based on their polarity; even if reviews are expressed in a sentence or document, sentiment analysis is used to classify it into positive, negative or neutral reviews. In this paper, we proposed a framework using TF-IDF and transition point to detect polarity in Persian movie reviews. The proposed approach has been evaluated using different classifiers such as SVM, Naive Bayes, MLP and CNN. The experimental results show the transition point is more effective in comparison with traditional feature such as TF-IDF.Output Status: Forthcomin

    Extending persian sentiment lexicon with idiomatic expressions for sentiment analysis

    Get PDF
    Nowadays, it is important for buyers to know other customer opinions to make informed decisions on buying a product or service. In addition, companies and organizations can exploit customer opinions to improve their products and services. However, the Quintilian bytes of the opinions generated every day cannot be manually read and summarized. Sentiment analysis and opinion mining techniques offer a solution to automatically classify and summarize user opinions. However, current sentiment analysis research is mostly focused on English, with much fewer resources available for other languages like Persian. In our previous work, we developed PerSent, a publicly available sentiment lexicon to facilitate lexicon-based sentiment analysis of texts in the Persian language. However, PerSent-based sentiment analysis approach fails to classify the real-world sentences consisting of idiomatic expressions. Therefore, in this paper, we describe an extension of the PerSent lexicon with more than 1000 idiomatic expressions, along with their polarity, and propose an algorithm to accurately classify Persian text. Comparative experimental results reveal the usefulness of the extended lexicon for sentiment analysis as compared to PerSent lexicon-based sentiment analysis as well as Persian-to-English translation-based approaches. The extended version of the lexicon will be made publicly available

    Towards Arabic multi-modal sentiment analysis

    Get PDF
    In everyday life, people use internet to express and share opinions, facts, and sentiments about products and services. In addition, social media applications such as Facebook, Twitter, WhatsApp, Snapchat etc., have become important information sharing platforms. Apart from these, a collection of product reviews, facts, poll information, etc., is a need for every company or organization ranging from start-ups to big firms and governments. Clearly, it is very challenging to analyse such big data to improve products, services, and satisfy customer requirements. Therefore, it is necessary to automate the evaluation process using advanced sentiment analysis techniques. Most of previous works focused on uni-modal sentiment analysis mainly textual model. In this paper, a novel Arabic multimodal dataset is presented and validated using state-of-the-art support vector machine (SVM) based classification method

    Persian Sentence-level Sentiment Polarity Classification

    Get PDF
    Assigning positive and negative polarity into Persian sentences is difficult task, there are different approaches has been proposed in various languages such as English. However, there is not any approach available to identify the final polarity of the Persian sentences. In this paper, the novel approach has been proposed to detect polarity for Persian sentences using PerSent lexicon (Persian lexicon). For this, we have proposed two different algorithms to detect polarity in the sentence and finally SVM, MLP and Na¨ıve Bayes classifier has been used to evaluate the performance of the proposed method. The SVM received better results in comparison with Na¨ıve Bayes and MLP.Output Status: Forthcomin

    Adopting Transition Point Technique for Persian Sentiment Analysis

    Get PDF
    Sentiment analysis is used to analyses people’s opinions, views and emotions towards different entities such as products, organizations, companies and events. People’s opinions are important for most others during their decision-making process. For example, if someone wants to buy a product, they might want to know more about that product and the experiences of others with that product. Sentiment analysis is able to classify the reviews based on their polarity; even if reviews are expressed in a sentence or document, sentiment analysis is used to classify it into positive, negative or neutral reviews. In this paper, we proposed a framework using TF-IDF and transition point to detect polarity in Persian movie reviews. The proposed approach has been evaluated using different classifiers such as SVM, Naive Bayes, MLP and CNN. The experimental results show the transition point is more effective in comparison with traditional feature such as TF-IDF

    Persian Sentence-level Sentiment Polarity Classification

    Get PDF
    Assigning positive and negative polarity into Persian sentences is difficult task, there are different approaches has been proposed in various languages such as English. However, there is not any approach available to identify the final polarity of the Persian sentences. In this paper, the novel approach has been proposed to detect polarity for Persian sentences using PerSent lexicon (Persian lexicon). For this, we have proposed two different algorithms to detect polarity in the sentence and finally SVM, MLP and Na¨ıve Bayes classifier has been used to evaluate the performance of the proposed method. The SVM received better results in comparison with Na¨ıve Bayes and MLP
    • …
    corecore