4,197 research outputs found
Time Dependence of Chemical Freeze-out in Relativistic Heavy Ion Collisions
We investigate chemical and thermal freeze-out time dependencies for strange
particle production for CERN SPS heavy ion collisions in the framework of a
dynamical hadronic transport code. We show that the Lambda yield changes
considerably after hadronization in the case of Pb+Pb collisions, whereas for
smaller system sizes (e.g. S+S) the direct particle production dominates over
production from inelastic rescattering. Chemical freeze-out times for strange
baryons in Pb+Pb are smaller than for non-strange baryons, but they are still
sufficiently long for hadronic rescattering to contribute significantly to the
final Lambda yield. Based on inelastic and elastic cross section estimates we
expect the trend of shorter freeze-out times (chemical and kinetic), and thus
less particle production after hadronization, to continue for multi-strange
baryons.Comment: 10 pages, 7 postscript figure
Source Dimensions in Ultrarelativistic Heavy Ion Collisions
Recent experiments on pion correlations, interpreted as interferometric
measurements of the collision zone, are compared with models that distinguish a
prehadronic phase and a hadronic phase. The models include prehadronic
longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and
rescattering of the produced hadrons. We find that the longitudinal and outward
radii are surprisingly sensitive to the algorithm used for two-body collisions.
The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a
heavy target requires the existence of a prehadronic phase which converts to
the hadronic phase at densities around 0.8-1.0 GeV/fm. The transverse radii
cannot be reproduced without introducing more complex dynamics into the
transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major
change is an additional discussion of the classical two-body collision
algorithm, a (compressed) postscript file of the complete paper including
figures can be obtained from Authors or via anonymous ftp at
ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE