10 research outputs found
Ni(NH3)2(NO3)2 – A 3-D network through bridging nitrate units isolated from the thermal decomposition of nickel hexammine dinitrate
Nickel nitrate diammine, Ni(NH3)2(NO3)2, can be synthesised from the thermal decomposition of nickel nitrate hexammine, Ni[(NH3)6](NO3)2. The hexammine decomposes in two distinct major stages; the first releases 4 equivalents of ammonia while the second involves the release of NOx, N2, and H2O to yield NiO. The intermediate diammine compound can be isolated following the first deammoniation step or synthesised as a single phase from the hexammine under vacuum. Powder X-ray diffraction (PXD) experiments have allowed the structure of Ni(NH3)2(NO3)2 to be solved for the first time. The compound crystallises in orthorhombic space group Pca21 (a = 11.0628 (5) Å, b = 6.0454 (3) Å, c = 9.3526 (4) Å; Z = 4) and contains 11 non-hydrogen atoms in the asymmetric unit. Fourier transform infrared (FTIR) spectroscopy demonstrates that the bonding in the ammine is consistent with the structure determined by PXD
Ni(NH3)2(NO3)2 – A 3-D network through bridging nitrate units isolated from the thermal decomposition of nickel hexammine dinitrate
Nickel nitrate diammine, Ni(NH3)2(NO3)2, can be synthesised from the thermal decomposition of nickel nitrate hexammine, Ni[(NH3)6](NO3)2. The hexammine decomposes in two distinct major stages; the first releases 4 equivalents of ammonia while the second involves the release of NOx, N2, and H2O to yield NiO. The intermediate diammine compound can be isolated following the first deammoniation step or synthesised as a single phase from the hexammine under vacuum. Powder X-ray diffraction (PXD) experiments have allowed the structure of Ni(NH3)2(NO3)2 to be solved for the first time. The compound crystallises in orthorhombic space group Pca21 (a = 11.0628 (5) Å, b = 6.0454 (3) Å, c = 9.3526 (4) Å; Z = 4) and contains 11 non-hydrogen atoms in the asymmetric unit. Fourier transform infrared (FTIR) spectroscopy demonstrates that the bonding in the ammine is consistent with the structure determined by PXD
Nano-inclusion in one step: spontaneous ice-templating of porous hierarchical nanocomposites for selective hydrogen release
3-Dimensional porous scaffold materials can be fabricated by ice templating sheets of graphene oxide (GO) or partially reduced graphene oxide (rGO). Aqueous suspensions of GO (or rGO) can be cast into monoliths or formed as beads on cooling and the solid matrices then fashioned with either laminar or radial porosity as result. Further, ammonia borane (AB) can be integrated into the hierarchical structures in situ in a one-step process without the requirement of melt infiltration or solution impregnation techniques. Compared to AB itself, the ensuing self-assembled beads release hydrogen at a reduced onset temperature and without volume expansion on heating, suppressing the release of diborane, borazine and ammonia. Pre-reduction of the GO matrix material (to rGO) eliminates CO/CO2 release from the composites
Wetting of Ni and NiO by Alternative Molten Carbonate Fuel Cell Electrolytes: I. Influence of Gas Atmosphere
Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design
This perspective highlights the state-of-the-art solid-state hydrogen storage and describes newly emerging routes towards meeting the practical demands required of a solid-state storage system. The article focuses both on the physical and chemical aspects of hydrogen storage. Common to both classes of storage material is the concept of nanostructure design to tailor kinetics and thermodynamics; whether this be control of functionalised porosity or crystalline growth on the nanoscale. In the area of chemical storage, different processing and nanostructuring techniques that have been employed to overcome the barriers of slow kinetics will be discussed in addition to new chemical systems that have emerged. The prospects of porous inorganic solids, coordination polymers (metal organic frameworks; MOFs) and other polymeric matrices for physical storage of hydrogen will be highlighted. Additionally the role of inorganic nanostructures as evolving materials “intermediate” between physical and chemical storage systems will be discussed and their place within the fine thermodynamic balance for optimum hydrogen uptake and release considered