972 research outputs found

    Effectiveness of denoising diffusion probabilistic models for fast and high-fidelity whole-event simulation in high-energy heavy-ion experiments

    Full text link
    Artificial intelligence (AI) generative models, such as generative adversarial networks (GANs), variational auto-encoders, and normalizing flows, have been widely used and studied as efficient alternatives for traditional scientific simulations. However, they have several drawbacks, including training instability and inability to cover the entire data distribution, especially for regions where data are rare. This is particularly challenging for whole-event, full-detector simulations in high-energy heavy-ion experiments, such as sPHENIX at the Relativistic Heavy Ion Collider and Large Hadron Collider experiments, where thousands of particles are produced per event and interact with the detector. This work investigates the effectiveness of Denoising Diffusion Probabilistic Models (DDPMs) as an AI-based generative surrogate model for the sPHENIX experiment that includes the heavy-ion event generation and response of the entire calorimeter stack. DDPM performance in sPHENIX simulation data is compared with a popular rival, GANs. Results show that both DDPMs and GANs can reproduce the data distribution where the examples are abundant (low-to-medium calorimeter energies). Nonetheless, DDPMs significantly outperform GANs, especially in high-energy regions where data are rare. Additionally, DDPMs exhibit superior stability compared to GANs. The results are consistent between both central and peripheral centrality heavy-ion collision events. Moreover, DDPMs offer a substantial speedup of approximately a factor of 100 compared to the traditional Geant4 simulation method.Comment: 11 pages, 7 figure

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks