89 research outputs found

    Expansion dynamics of Lennard-Jones systems

    Full text link
    The dynamics of the expansion of a Lennard-Jones system, initially confined at high density and subsequently expanding freely in the vacuum, is confronted to an expanding statistical ensemble, derived in the diluted quasi-ideal Boltzmann approximation. The description proves to be fairly accurate at predicting average one-body global observables, but important deviations are observed in the configuration-space structure of the events. Possible implications for finite expanding physical systems are outlined

    High-resolution kinetic energy release distributions and dissociation energies for fullerene ions C(n)(+), 42 \u3c= n \u3c= 90

    Get PDF
    We have measured the kinetic energy released in the unimolecular dissociation of fullerene ions, C(n)(+)--\u3eC(n-2)(+)+C(2), for sizes 42less than or equal tonless than or equal to90. A three-sector-field mass spectrometer equipped with two electric sectors has been used in order to ensure that contributions from isotopomers of different masses do not distort the experimental kinetic energy release distributions. We apply the concept of microcanonical temperature to derive from these data the dissociation energies of fullerene cations. They are converted to dissociation energies of neutral fullerenes with help of published adiabatic ionization energies. The results are compared with literature values. (C) 2004 American Institute of Physics

    High resolution measurements of kinetic energy release distributions of neon, argon, and krypton cluster ions using a three sector field mass spectrometer

    Get PDF
    Using a newly constructed three sector field mass spectrometer (resulting in a BE1E2 field configuration) we have measured the kinetic energy release distributions of neon, argon, and krypton cluster ions. In the present study we used the first two sectors, B and E1, constituting a high resolution mass spectrometer, to select the parent ions in terms of mass, charge, and energy, and studied the decay of those ions in the third field free region. Due to the improved mass resolution we were able to extend earlier studies carried out with a two sector field machine, where an upper size limit arose from the fact that several isotopomers contribute to a decaying parent ion beam when the cluster size exceeds a certain value. Furthermore we developed a new data analysis. It allows us to model also fragment ion peaks that are a superposition of different decay reactions and thus we can determine the average kinetic energy release for all decay reactions of a given cluster ion. In a further step we used these results to determine the binding energies of cluster ions Rg(n) (ngreater than or equal to10) by applying finite heat bath theory. The smaller sizes have not been included in this analysis, because the validity of finite heat bath theory becomes questionable below napproximate to10. The present average kinetic energy releases and binding energies are compared with other experiments and various calculations. (C) 2004 American Institute of Physics

    Extended Gibbs ensembles with flow

    Full text link
    A statistical treatment of finite unbound systems in the presence of collective motions is presented and applied to a classical Lennard-Jones Hamiltonian, numerically simulated through molecular dynamics. In the ideal gas limit, the flow dynamics can be exactly re-casted into effective time-dependent Lagrange parameters acting on a standard Gibbs ensemble with an extra total energy conservation constraint. Using this same ansatz for the low density freeze-out configurations of an interacting expanding system, we show that the presence of flow can have a sizeable effect on the microstate distribution.Comment: 7 pages, 4 figure

    Mechanisms and dynamics of the metastable decay in Ar-2(+)

    Get PDF
    A detailed experimental as well as theoretical investigation of the properties of the metastable dissociation Ar-2(+)--\u3eAr++Ar is presented. The mass-analyzed ion kinetic energy (MIKE) scan technique has been performed using a three sector field mass spectrometer. The possible mechanisms of the metastability of Ar-2(+) have been examined and the observed decay process is assigned to the II(1/2)(u)--\u3eI(1/2)(g) bound to continuum radiative transition, in agreement with earlier work. The calculation of the theoretical shape of the kinetic energy release distribution of fragment ions allowed us to construct the theoretical MIKE peak and compare it with the raw experimental data. The accuracy of various sets of potential energy curves for Ar-2(+) is discussed, as well as the way of production of the metastable Ar-2(+)[II(1/2)(u)] electronic state by electron impact. Excellent agreement between the experimental data and theoretical model has been observed. (C) 2004 American Institute of Physics

    Kinetic-energy release in Coulomb explosion of metastable C3H52+

    Get PDF
    C3H52+, formed by electron impact ionization of propane, undergoes metastable decay into C2H2++CH3+. We have monitored this reaction in a magnetic mass spectrometer of reversed geometry that is equipped with two electric sectors (BEE geometry). Three different techniques were applied to identify the fragment ions and determine the kinetic-energy release (KER) of spontaneous Coulomb explosion of C3H52+ in the second and third field free regions of the mass spectrometer. The KER distribution is very narrow, with a width of about 3% [root-mean square standard deviation]. An average KER of 4.58+/-0.15 eV is derived from the distribution. High level ab initio quantum-chemical calculations of the structure and energetics of C3H52+ are reported. The activation barrier of the reverse reaction, CH3++C2H2+ (vinylidene), is computed. The value closely agrees with the experimental average KER, thus indicating that essentially all energy available in the reaction is partitioned into kinetic energy. (C) 2003 American Institute of Physics

    Manoeuvring simulation on the bridge for predicting motion of real ships and as training tool in ship handling simulators

    Full text link
    International sea transport has growing rapidly dur-ing the period of the last decade. Ships became larg-er and wider and its container capacity is still in-creasing to 12.000 TEU and even more. To navigat

    Multi-scale X-ray Tomography of Solder Interconnects in Microelectronics

    Get PDF
    Advanced packaging, including 3D IC integration, is one of the main drivers in packaging and system integration to meet the requirements for miniaturized smart systems with high functionality and high performance. For 3D stacking of wafers or dies, interconnections like micro solder bumps and Cu pillars are used. Figure 1 (left) shows a stack with a TSV interposer structure [1]. 3D-stacked products and advanced packaging challenge materials and process characterization. The control of the micro-bump quality is a particular issue. Special tasks are the characterization of the geometry of the solder bumps to estimate the stress enhancement risks, the nondestructive imaging of micron-size pores and of intermetallic phases as well as the visualization of cracks. Several NDE techniques for metrology and failure analysis are currently under discussion. In this paper, the potential and the limits of micro XCT and nano XCT for NDE of solder interconnects are described. Strategies for nondestructive evaluation of geometry, materials and defects are discussed. It is shown that multi-scale imaging with several resolution ranges is one potential approach. Micro XCT (resolution about 1 m) and nano XCT (resolution about 50 nm) are very useful lab-based techniques with a promising prospect for the future. We demonstrate the capabilities for nondestructive imaging of multi-die stacks with TSVs and micro solder bumps. Figure 1 (middle and right) right demonstrates a micro XCT overview and a nano XCT ROI study of such a multi-die stack with solder interconnects. An analysis of individual solder bumps reveals mismatches in relative positioning, variability in the shape, micron-size pores, and the distribution of intermetallic phases. This information is important to evaluate the respective process steps (process control) and the product reliability (quality control). Since deviations from the targeted geometry and defects are difficult to locate precisely from a two-dimensional image, X-ray computed tomography has to be applied

    Numerical simulation of the thermal fragmentation process in fullerene C60

    Full text link
    The processes of defect formation and annealing in fullerene C60 at T=(4000-6000)K are studied by the molecular dynamics technique with a tight-binding potential. The cluster lifetime until fragmentation due to the loss of a C2 dimer has been calculated as a function of temperature. The activation energy and the frequency factor in the Arrhenius equation for the fragmentation rate have been found to be Ea = (9.2 +- 0.4) eV and A = (8 +- 1)10^{19} 1/s. It is shown that fragmentation can occur after the C60 cluster loses its spherical shape. This fact must be taken into account in theoretical calculations of Ea.Comment: 12 pages, 3 figure
    corecore