47 research outputs found
Equivalent circuits used in the diagnostics of insulation in power transformers
An equivalent circuit of the insulation system in power transformers comes in many forms. In tests for the dielectric loss tangent (tgδ) of the main insulation, the equivalent circuit has been simplified to two-terminal RC series connected or parallel connected circuits. For direct current tests of groundwall insulation modelling, two two-terminals circuits are required – one for charging and shorting, the other for the voltage recovering after shorting. The model turn-to-turn insulation may also be presented by two-terminal circuits. The parameters of the two-terminal circuit can be determined by direct current. The tested winding is energized by DC voltage, the current is interrupted and the voltage waveform on the terminals of the winding is recorded. The parameters of turn-to-turn insulation (equivalent circuit parameters) are calculated from the voltage waveform and they can be used for diagnostic purposes
Chokes in passive compensation filters
Filtry pasywne wyższych harmonicznych są stosowane w sieciach elektroenergetycznych, do których są przyłączone nieliniowe odbiorniki energii elektrycznej dużej mocy. Filtr pasywny jest układem szeregowym indukcyjności L i pojemności C, tak dobranych, aby dla pulsacji ωv były w rezonansie. Pojedynczy filtr składa się z dławika indukcyjnego i baterii kondensatorów. Zarówno dławiki, jak i kondensatory powinny mieć znamionową moc pozorną dopasowaną do mocy harmonicznej, którą kompensują. Jeśli moc filtru jest za mała, to istnieje zagrożenie przegrzania termicznego dławika bądź baterii kondensatorów. Rdzenie magnetyczne dławików są dzielone tak, aby w obwodzie magnetycznym było kilka szczelin powietrznych. Segmenty rdzeni w zmiennym polu magnetycznym drgają. Drgania te przy słabym zamocowaniu rdzenia prowadzą do uszkodzenia mocowania i uszkodzenia uzwojenia. Załączono zdjęcia dławika z przegrzanym uzwojeniem i uszkodzonym mocowaniem rdzenia.Harmonic passive filters are used in power networks to which non-linear high-power electric energy receivers are connected. Passive filter is built as a series connection of inductance L and capacitance C, calculated for resonance at ων. A single filter consists of an induction choke and a capacitor bank. Both, chokes and capacitors, should have a nominal apparent power adjusted to the harmonic power they compensate. If the filter power is too low, there is a risk of overheating of the chock or capacitor bank. The magnetic cores of the chocks are divided so that there are several air gaps in the magnetic circuit. Segments of cores in a variable magnetic field vibrate. These vibrations lead to damage of the mounting and damage of the winding, when the core is not poorly installed. Photos of the chock with overheated winding and damaged core are attached
Power losses and efficiency of transformers
W artykule zdefiniowano sprawność energetyczną transformatorów. Stały postęp technologii blachy transformatorowej owocuje obniżeniem stratności i wzrostem indukcji nasycenia rdzenia. Stwarza to warunki do zmniejszenia masy rdzenia i w mniejszym stopniu zmniejszenia masy uzwojenia. Podano przykłady strat mocy jałowych i obciążeniowych transformatorów rozdzielczych produkowanych w latach 60. XX w. i produkowanych obecnie. Od 01 lipca 2021 r. Komisja Unii Europejskiej [8] i Normy Europejskie [6,7] ustaliły dalsze obniżenie strat mocy i zwiększenie sprawności w instalowanych transformatorach.The article defines the energy efficiency of transformers. The constant advancement in transformer sheet technology results in a reduction in loss and an increase in core saturation flux density. This creates conditions for reducing the core mass and, to a lesser extent, for reducing the winding mass. Examples of noload and load losses of distribution transformers manufactured in the 1960s and currently manufactured are given. From 01 July 2021, the European Union Commission [8] and European Standards [6,7] have established a further reduction of power losses and an increase in efficiency in installed transformers
A dynamic model of a squirrel-induction motor
Silniki indukcyjne klatkowe dużej mocy w większości napędów elektrycznych pracują przy zasilaniu bezpośrednim z sieci elektroenergetycznej, pracują zatem jako napędy nieregulowane. Stany dynamiczne związane z: rozruchem, wyłączeniem zasilania i powtórnym załączeniem napięcia, rewersją prędkości obrotowej, oddziałują niekorzystnie na silnik, sieć elektroenergetyczną, na napędzaną maszynę roboczą i elementy przeniesienia napędu (wały, sprzęgła, przekładnie). Analiza pracy silnika w stanach elektromechanicznie nieustalonych jest przeprowadzona z wykorzystaniem modelu matematycznego silnika w układzie współrzędnych α, β. Dla silnika o parametrach znamionowych: 500 kW; 6000 V, wykorzystując pomiary przy biegu jałowym i w stanie zwarcia, obliczono parametry schematu zastępczego dla współrzędnych α, β. Przeprowadzono symulację komputerową rozruchu silnika przy korzystnej chwili załączenia napięcia i niekorzystnej chwili załączenia napięcia. W pierwszym przypadku wartości udarowe prądu rozruchowego i momentu rozruchowego są mniejsze i wynoszą: Iud min = 6IN, Tud min = 4,5TN. W drugim przypadku wartości udarowe prądu rozruchowego i momentu rozruchowego są maksymalne i wynoszą: Iud max = 8IN, Tud max = 8,5TN.High power cage induction motors work, in most electric drives, with direct supply from the power grid, therefore they work as unregulated drives. Dynamic states are associated with: start, turning the power off and re-switching on, rotation reverse, they have an adverse effect on the motor, on the electricity network, on the driven machine and power train components (shafts, clutches, gears). The analysis of motor’s operation in electro-mechanically unsteady states are carried out using the mathematical model of the engine in the α, β coordinate system. For a motor with rated parameters: 500 kW; 6000 V, p = 2, using idle and short circuit measurements, the equivalent circuit diagram parameters for the α, β coordinates were calculated. Computer simulation of the motor’s start-up was carried out at the favorable and unfavorable moment of switching on the voltage. In the first case, the shock values of the starting current and the starting torque are minimal and are: Iud min = 6IN, Tud min = 4,5TN. In the second case, the shock values of the starting current and the starting torque are maximal and are: Iud max = 8IN, Tud max = 8,5TN
Chokes in passive compensation filters
Harmonic passive filters are used in power networks to which non-linear high-power electric energy receivers are connected. Passive filter is built as a series connection of inductance L and capacitance C, calculated for resonance at ων. A single filter consists of an induction choke and a capacitor bank. Both, chokes and capacitors, should have a nominal apparent power adjusted to the harmonic power they compensate. If the filter power is too low, there is a risk of overheating of the chock or capacitor bank. The magnetic cores of the chocks are divided so that there are several air gaps in the magnetic circuit. Segments of cores in a variable magnetic field vibrate. These vibrations lead to damage of the mounting and damage of the winding, when the core is not poorly installed. Photos of the chock with overheated winding and damaged core are attached.Filtry pasywne wyższych harmonicznych są stosowane w sieciach elektroenergetycznych, do których są przyłączone nieliniowe odbiorniki energii elektrycznej dużej mocy. Filtr pasywny jest układem szeregowym indukcyjności i pojemności , tak dobranych, aby dla pulsacji były w rezonansie. Pojedynczy filtr składa się z dławika indukcyjnego i baterii kondensatorów. Zarówno dławiki jak i kondensatory powinny mieć znamionową moc pozorną dopasowaną do mocy harmonicznej, którą kompensują. Jeśli moc filtra jest za mała to istnieje zagrożenie przegrzania termicznego dławika bądź baterii kondensatorów. Rdzenie magnetyczne dławików są dzielone tak, aby w obwodzie magnetycznym było kilka szczelin powietrznych. Segmenty rdzeni w zmiennym polu magnetycznym drgają. Drgania te, przy słabym zamocowaniu rdzenia prowadzą do uszkodzenia mocowania i uszkodzenia uzwojenia. Załączono zdjęcia dławika z przegrzanym uzwojeniem i uszkodzonym mocowaniem rdzenia
A multipolar synchronous generator with hybrid excitation
Wielobiegunowa prądnica synchroniczna ma liczbę par biegunów [wzór] . Bieguny [wzór] są wzbudzane magnesami trwałymi, a na biegunach [wzór] jest umieszczone uzwojenie wzbudzenia. W artykule przedstawiono prądnicę synchroniczną o liczbie par biegunów p=6, przy czym cztery pary biegunów są wzbudzane magnesami trwałymi przyklejonymi na powierzchni nabiegunników, a dwie pary biegunów są wzbudzane elektromagnetycznie. W ten sposób straty mocy wzbudzenia zmniejszają się o 66%. Sześciofazowe uzwojenie twornika (2x3 fazy) umożliwia zwiększenie mocy znamionowej prądnicy o 3,4% i o taką samą wartość zmniejszają się straty mocy w uzwojeniu twornika. Prądnica przy pracy samotnej i zmianach mocy obciążenia ma możliwość stabilizacji napięcia, a przy pracy na sieć elektroenergetyczną umożliwia regulację, w sposób ciągły, mocy biernej. Uzwojenie wzbudzenia ma małą masę miedzi, tym samym straty mocy w uzwojeniu wzbudzenia są małe.A multi-pole synchronous generator has a number of pole pairs [wzór] . The poles [wzór] are excited with permanent magnets, and the field winding is located at the poles [wzór] . The article presents a synchronous generator with the number of pole pairs p = 6, where four pole pairs are excited with permanent magnets glued on the surface of the pole pieces, and two pole pairs are electromagnetically excited. In this way, the excitation power loss is reduced by 66%. The six-phase armature winding (2x3 phase) allows the generator's rated power to increase by 3.4% and the power loss in the armature winding is reduced by the same amount. The generator in the case of off-gird work and changes of load power has the ability to stabilize the voltage, and when working on-grid it allows continuous regulation of reactive power. The excitation winding has a small copper mass, thus the power losses in the field winding are low
Diagnostyka maszyn i urządzeń – uwagi ogólne
Współcześnie, w okresie stale rosnących wymagań wobec wydajności oraz redukcji kosztów produkcji w przemyśle i energetyce, koniecznością staje się właściwa eksploatacja i diagnostyka maszyn. Często uszkodzenia niewielkich elementów napędowych skutkują znacznymi stratami wynikającymi z nieprzewidzianego zatrzymania procesu produkcyjnego oraz nieplanowych prac remontowych. Diagnostyka maszyn i urządzeń oraz monitorowanie parametrów ich pracy pozwalają uniknąć skutków awarii, właściwie zaplanować okresy przeglądów i remontów maszyn i urządzeń oraz znacznie wydłużyć czas ich eksploatacji [2.1–2.33]
Asynchronous slip-ring motor synchronized with permanent magnets
The electric LSPMSM motor presented in the paper differs from standard induction motor by rotor design. The insulated start-up winding is located in slots along the rotor circumference. The winding ends are connected to the slip-rings. The rotor core contains permanent magnets. The electromechanical characteristics for synchronous operation were calculated, as were the start-up characteristics for operation with a short-circuited rotor winding. Two model motors were used for the calculations, the V-shaped Permanent Magnet (VPM) – Fig. 3, and the Linear Permanent Magnet (IPM) – Fig. 4, both rated at 14.5 kW. The advantages of the investigated motor are demonstrated in the conclusions
Electric machine with two armatures excited with permanent magnets
Maszyna elektryczna z magnesami trwałymi i dwoma twornikami ma umieszczony, między jarzmami, rdzeń dławika. Rdzeń o kształcie toroidu jest uzwojony. Boki zwojów dławika są umieszczone w żłobkach promieniowych: w jarzmach tworników bądź w rdzeniu dławika. Wirnik, z zamocowanymi magnesami trwałymi, dla obydwóch maszyn jest wspólny. Strumień wzbudzenia Φ każdego z tworników zawiera dwie składowe: składową obwodowąΦ1 i składową osiową Φ2 . Uzwojenie dławika zasilane prądem stałym. Wartość prądu determinuje nasycenie rdzenia i zmienia reluktancję rdzenia dla strumienia Φ2. Zwiększając zatem prąd zwiększa się reluktancję w obwodzie strumienia Φ2, strumień Φ2 zmienia się i tym samym zmniejsza się strumień wzbudzenia każdego Φ z tworników.The permanent magnet electric machine with two armatures has a choke core located between the yokes. The toroid-shaped core is wound. The sides of the choke coils are located in radial slots: in the armature yokes or in the throttle core. The rotor, with permanent magnets attached, is common to both machines. The excitation flux of each armature contains two components: a peripheral component and an axial component. Choke winding powered by DC. The current value determines the saturation of the core and changes the core's reluctance for the flux. Therefore, by increasing the current, the reluctance in the flux circuit increases, the flux changes, and thus the excitation flux of each armature decreases
A multipolar synchronous generator with hybrid excitation
Wielobiegunowa prądnica synchroniczna ma liczbę par biegunów p = pPM + pEM. Bieguny (2pPM) są wzbudzane magnesami trwałymi, a na biegunach (2pEl) jest umieszczone uzwojenie wzbudzenia. W artykule przedstawiono prądnicę synchroniczną o liczbie par biegunów p = 6, przy czym cztery pary biegunów są wzbudzane magnesami trwałymi przyklejonymi na powierzchni nabiegunników, a dwie pary biegunów są wzbudzane elektromagnetycznie. W ten sposób straty mocy wzbudzenia zmniejszają się o 66%. Sześciofazowe uzwojenie twornika (2 x 3 fazy) umożliwia zwiększenie mocy znamionowej prądnicy o 3,4% i o taką samą wartość zmniejszają się straty mocy w uzwojeniu twornika. Prądnica przy pracy samotnej i zmianach mocy obciążenia ma możliwość stabilizacji napięcia, a przy pracy na sieć elektroenergetyczną umożliwia regulację, w sposób ciągły, mocy biernej. Uzwojenie wzbudzenia ma małą masę miedzi, tym samym straty mocy w uzwojeniu wzbudzenia są małe.A multi-pole synchronous generator has a number of pole pairs p = pPM + pEM. The poles (2pPM) are excited with permanent magnets, and the field winding is located at the poles (2pEl). The article presents a synchronous generator with the number of pole pairs p = 6, where four pole pairs are excited with permanent magnets glued on the surface of the pole pieces, and two pole pairs are electromagnetically excited. In this way, the excitation power loss is reduced by 66%. The six-phase armature winding (2 x 3 phase) allows the generator’s rated power to increase by 3,4% and the power loss in the armature winding is reduced by the same amount. The generator in the case of off-gird work and changes of load power has the ability to stabilize the voltage, and when working on-grid it allows continuous regulation of reactive power. The excitation winding has a small copper mass, thus the power losses in the field winding are low