167 research outputs found

    Naturalness after LHC8

    Full text link
    I review the status of naturalness of the weak scale after the results from the LHC operating at an energy of 8 TeV. Talk delivered at the 2013 Europhysics Conference on High Energy Physics (EPS), Stockholm, Sweden, 18-24 July 2013.Comment: 13 pages, 1 figure; 2013 EPS Conference Proceeding

    A new ansatz for quark and lepton mass matrices

    Full text link
    A new ansatz for quark and lepton mass matrices is proposed in the context of supersymmetric grand unified theories. The 13 parameters describing fermion masses and mixings are determined in terms of only 6 free parameters, allowing 7 testable predictions. The values of VusV_{us}, VcbV_{cb}, VubV_{ub}, mum_u, mdm_d, msm_s, and mbm_b are then predicted as a function of the 3 charged lepton masses, mcm_c, mtm_t, and tanβ\tan \beta, the ratio of Higgs vacuum expectation values. In particular the Cabibbo angle and ms/mdm_s/m_d are determined in terms of only lepton masses. All predictions are in very good agreement with experiments.Comment: 10 page

    Beyond the Standard Model

    Get PDF
    Elementary introduction to physics beyond the Standard Model. Lectures delivered at the 1995 European School of High-Energy Physics in Dubna, Russia.Comment: 19 page

    A Clockwork Theory

    Full text link
    The clockwork is a mechanism for generating light particles with exponentially suppressed interactions in theories which contain no small parameters at the fundamental level. We develop a general description of the clockwork mechanism valid for scalars, fermions, gauge bosons, and gravitons. This mechanism can be implemented with a discrete set of new fields or, in its continuum version, through an extra spatial dimension. In both cases the clockwork emerges as a useful tool for model-building applications. Notably, the continuum clockwork offers a solution to the Higgs naturalness problem, which turns out to be the same as in linear dilaton duals of Little String Theory. We also elucidate the similarities and differences of the continuum clockwork with large extra dimensions and warped spaces. All clockwork models, in the discrete and continuum, exhibit novel phenomenology with a distinctive spectrum of closely spaced resonances.Comment: Body of text 26 page

    Rate for annihilation of galactic dark matter into two photons

    Get PDF
    A calculation of the cross section for neutralino-neutralino annihilation into two photons is performed and applied to dark matter in the galactic halo to find the counting rate in a large gamma ray detector such as EGRET (Energetic Gamma Ray Experiment Telescope) or ASTROGAM. Combining constraints from particle accelerators with the requirement that the neutralinos make up the dark matter, it is found that rates of over a few dozen events per year are unlikely. The assumptions that go into these conclusions are listed. Other particle dark matter candidates which could give larger and perhaps observable signals are suggested

    Starobinsky-like inflation from induced gravity

    Full text link
    We derive a general criterion that defines all single-field models leading to Starobinsky-like inflation and to universal predictions for the spectral index and tensor-to-scalar ratio, which are in agreement with Planck data. Out of all the theories that satisfy this criterion, we single out a special class of models with the interesting property of retaining perturbative unitarity up to the Planck scale. These models are based on induced gravity, with the Planck mass determined by the vacuum expectation value of the inflaton.Comment: 13 pages; some references added; version published in PL

    Flavor Beyond the Standard Universe

    Full text link
    We explore the possibility that the observed pattern of quark masses is the consequence of a statistical distribution of Yukawa couplings within the multiverse. We employ the anthropic condition that only two ultra light quarks exist, justifying the observed richness of organic chemistry. Moreover, the mass of the recently discovered Higgs boson suggests that the top Yukawa coupling lies near the critical condition where the electroweak vacuum becomes unstable, leading to a new kind of flavor puzzle and to a new anthropic condition. We scan Yukawa couplings according to distributions motivated by high-scale flavor dynamics and find cases in which our pattern of quark masses has a plausible probability within the multiverse. Finally we show that, under some assumptions, these distributions can significantly ameliorate the runaway behavior leading to weakless universes.Comment: 12 pages, 4 figure

    Hunting for Dark Particles with Gravitational Waves

    Full text link
    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.Comment: 44 pages, 14 figures. Revised version to appear in JCA

    Nearly Degenerate Gauginos and Dark Matter at the LHC

    Full text link
    Motivated by dark-matter considerations in supersymmetric theories, we investigate in a fairly model-independent way the detection at the LHC of nearly degenerate gauginos with mass differences between a few GeV and about 30 GeV. Due to the degeneracy of gaugino states, the conventional leptonic signals are likely lost. We first consider the leading signal from gluino production and decay. We find that it is quite conceivable to reach a large statistical significance for the multi-jet plus missing energy signal with an integrated luminosity about 50 pb^-1 (50 fb^-1) for a gluino mass of 500 GeV (1 TeV). If gluinos are not too heavy, less than about 1.5 TeV, this channel can typically probe gaugino masses up to about 100 GeV below the gluino mass. We then study the Drell-Yan type of gaugino pair production in association with a hard QCD jet, for gaugino masses in the range of 100-150 GeV. The signal observation may be statistically feasible with about 10 fb^-1, but systematically challenging due to the lack of distinctive features for the signal distributions. By exploiting gaugino pair production through weak boson fusion, signals of large missing energy plus two forward-backward jets may be observable at a 4-6\sigma level above the large SM backgrounds with an integrated luminosity of 100-300 fb^-1. Finally, we point out that searching for additional isolated soft muons in the range p_T ~3-10 GeV in the data samples discussed above may help to enrich the signal and to control the systematics. Significant efforts are made to explore the connection between the signal kinematics and the relevant masses for the gluino and gauginos, to probe the mass scales of the superpartners, in particular the LSP dark matter.Comment: 35 pages, 32 figure

    Phenomenological consequences of supersymmetry with anomaly-induced masses

    Get PDF
    In the supersymmetric standard model there exist pure gravity contributions to the soft mass parameters which arise via the superconformal anomaly. We consider the low-energy phenomenology with a mass spectrum dominated by the anomaly-induced contributions. In a well-defined minimal model we calculate electroweak symmetry breaking parameters, scalar masses, and the full one-loop splitting of the degenerate Wino states. The most distinctive features are gaugino masses proportional to the corresponding gauge coupling beta-functions, the possibility of a Wino as the lightest supersymmetric particle, mass degeneracy of sleptons, and a very massive gravitino. Unique signatures at high-energy colliders include dilepton and single lepton final states, accompanied by missing energy and displaced vertices. We also point out that this scenario has the cosmological advantage of ameliorating the gravitino problem. Finally, the primordial gravitino decay can produce a relic density of Wino particles close to the critical value.Comment: 26 pages, 7 figures, LaTe
    corecore