141 research outputs found

    Electron beam transfer line design for plasma driven Free Electron Lasers

    Full text link
    Plasma driven particle accelerators represent the future of compact accelerating machines and Free Electron Lasers are going to benefit from these new technologies. One of the main issue of this new approach to FEL machines is the design of the transfer line needed to match of the electron-beam with the magnetic undulators. Despite the reduction of the chromaticity of plasma beams is one of the main goals, the target of this line is to be effective even in cases of beams with a considerable value of chromaticity. The method here explained is based on the code GIOTTO [1] that works using a homemade genetic algorithm and that is capable of finding optimal matching line layouts directly using a full 3D tracking code.Comment: 9 Pages, 4 Figures. A related poster was presented at EAAC 201

    Plasma boosted electron beams for driving Free Electron Lasers

    Full text link
    In this paper, we report results of simulations, in the framework of both EuPRAXIA \cite{Walk2017} and EuPRAXIA@SPARC\_LAB \cite{Ferr2017} projects, aimed at delivering a high brightness electron bunch for driving a Free Electron Laser (FEL) by employing a plasma post acceleration scheme. The boosting plasma wave is driven by a tens of \SI{}{\tera\watt} class laser and doubles the energy of an externally injected beam up to \GeV{1}. The injected bunch is simulated starting from a photoinjector, matched to plasma, boosted and finally matched to an undulator, where its ability to produce FEL radiation is verified to yield O(\num{e11}) photons per shot at \nm{2.7}.Comment: 5 pages, 2 figure

    EuPRAXIA@SPARC_LAB: the high-brightness RF photo-injector layout proposal

    Full text link
    At EuPRAXIA@SPARC_LAB, the unique combination of an advanced high-brightness RF injector and a plasma-based accelerator will drive a new multi-disciplinary user-facility. The facility, that is currently under study at INFN-LNF Laboratories (Frascati, Italy) in synergy with the EuPRAXIA collaboration, will operate the plasma-based accelerator in the external injection configuration. Since in this configuration the stability and reproducibility of the acceleration process in the plasma stage is strongly influenced by the RF-generated electron beam, the main challenge for the RF injector design is related to generating and handling high quality electron beams. In the last decades of R&D activity, the crucial role of high-brightness RF photo-injectors in the fields of radiation generation and advanced acceleration schemes has been largely established, making them effective candidates to drive plasma-based accelerators as pilots for user facilities. An RF injector consisting in a high-brightness S-band photo-injector followed by an advanced X-band linac has been proposed for the EuPRAXIA@SPARC_LAB project. The electron beam dynamics in the photo-injector has been explored by means of simulations, resulting in high-brightness, ultra-short bunches with up to 3 kA peak current at the entrance of the advanced X-band linac booster. The EuPRAXIA@SPARC_LAB high-brightness photo-injector is described here together with performance optimisation and sensitivity studies aiming to actual check the robustness and reliability of the desired working point.Comment: 5 pages,5 figures, EAAC201

    Quadrupole scan emittance measurements for the ELI-NP compton gamma source

    Get PDF
    The high brightness electron LINAC of the Compton Gamma Source at the ELI Nuclear Physics facility in Roma- nia is accelerating a train of 32 bunches with a nominal total charge of 250 pC and nominal spacing of 16 ns . To achieve the design gamma flux, all the bunches along the train must have the designed Twiss parameters. Beam sizes are mea- sured with optical transition radiation monitors, allowing a quadrupole scan for Twiss parameters measurements. Since focusing the whole bunch train on the screen may lead to permanent screen damage, we investigate non-conventional scans such as scans around a maximum of the beam size or scans with a controlled minimum spot size. This paper discusses the implementation issues of such a technique in the actual machine layou

    Thermal issues for the optical transition radiation screen for the ELI-NP compton gamma source

    Get PDF
    A high brightness electron LINAC is being built in the Compton Gamma Source at the ELI Nuclear Physics facility in Romania. To achieve the design luminosity, a train of 32 bunches, 16 ns spaced, with a nominal charge of 250 pC will collide with a laser beam in two interaction points. Electron beam spot size is measured with Optical Transition Radiation (OTR) profile monitors. In order to measure the beam properties, the OTR screens must sustain the thermal and mechanical stress due to the energy deposited by bunches. This paper is an ANSYS study of the issues due to the high energy transferred to the OTR screens. Thermal multicycle analysis will be shown; each analysis will be followed by a structural analysis in order to investigate the performance of the materia

    Frontiers of beam diagnostics in plasma accelerators: measuring the ultra-fast and ultra-cold

    Get PDF
    Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to large energy spread and divergence of the emerging beams, and on femtosecond bunch length measurements

    EUPRAXIA@SPARC_LAB: Beam Dynamics studies for the X-band Linac

    Full text link
    In the framework of the Eupraxia Design Study an advanced accelerator facility EUPRAXIA@SPARC_LAB has been proposed to be realized at Frascati (Italy) Laboratories of INFN. Two advanced acceleration schemes will be applied, namely an ultimate high gradient 1 GeV X-band linac together with a plasma acceleration stage to provide accelerating gradients of the GeV/m order. A FEL scheme is foreseen to produce X-ray beams within 3-10 nm range. A 500-TW Laser system is also foreseen for electron and ion production experiments and a Compton backscattering Interaction is planned together with extraction beamlines at intermediate electron beam energy for neutron beams and THz radiation production. The electron beam dynamics studies in the linac are here presented together with the preliminary machine layout.Comment: 5 pages, 3 figures, NIM-A proceedings of EAAC201

    Longitudinal phase space measurement at the ELI-NP Compton gamma source

    Get PDF
    Virtual bunch length measurement can be carried out by means of ELEGANT code for tracking the bunch particles from RF deflector to the screen. The technique relies on the correlation between the bunch longitudinal coordinate and transverse coordinates induced through a RF deflector. Therefore, the bunch length measurement can be carried out measuring the vertical spot size at the screen, placed after the RF deflector. The deflecting voltage amplitude affects the resolution. Adding a dispersive element, e.g. a magnetic dipole between RF deflector and the screen, the full longitudinal phase space can be measured. In this paper, we discuss some issues relevant for the electron linac of the Compton source at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP)
    • …
    corecore