2,228 research outputs found

    Limits to clock synchronization induced by completely dephasing communication channels

    Full text link
    Clock synchronization procedures are analyzed in the presence of imperfect communications. In this context we show that there are physical limitations which prevent one from synchronizing distant clocks when the intervening medium is completely dephasing, as in the case of a rapidly varying dispersive medium.Comment: 6 Pages. Revised version as published in PR

    The role of entanglement in dynamical evolution

    Full text link
    Entanglement or entanglement generating interactions permit to achieve the maximum allowed speed in the dynamical evolution of a composite system, when the energy resources are distributed among subsystems. The cases of pre-existing entanglement and of entanglement-building interactions are separately addressed. The role of classical correlations is also discussed.Comment: 5 pages, 1 figure. Revised versio

    Quantum channels and their entropic characteristics

    Full text link
    One of the major achievements of the recently emerged quantum information theory is the introduction and thorough investigation of the notion of quantum channel which is a basic building block of any data-transmitting or data-processing system. This development resulted in an elaborated structural theory and was accompanied by the discovery of a whole spectrum of entropic quantities, notably the channel capacities, characterizing information-processing performance of the channels. This paper gives a survey of the main properties of quantum channels and of their entropic characterization, with a variety of examples for finite dimensional quantum systems. We also touch upon the "continuous-variables" case, which provides an arena for quantum Gaussian systems. Most of the practical realizations of quantum information processing were implemented in such systems, in particular based on principles of quantum optics. Several important entropic quantities are introduced and used to describe the basic channel capacity formulas. The remarkable role of the specific quantum correlations - entanglement - as a novel communication resource, is stressed.Comment: review article, 60 pages, 5 figures, 194 references; Rep. Prog. Phys. (in press

    Electromagnetic channel capacity for practical purposes

    Get PDF
    We give analytic upper bounds to the channel capacity C for transmission of classical information in electromagnetic channels (bosonic channels with thermal noise). In the practically relevant regimes of high noise and low transmissivity, by comparison with know lower bounds on C, our inequalities determine the value of the capacity up to corrections which are irrelevant for all practical purposes. Examples of such channels are radio communication, infrared or visible-wavelength free space channels. We also provide bounds to active channels that include amplification.Comment: 6 pages, 3 figures. NB: the capacity bounds are constructed by generalizing to the multi-mode case the minimum-output entropy bounds of arXiv:quant-ph/0404005 [Phys. Rev. A 70, 032315 (2004)

    Radiation Pressure Induced Einstein-Podolsky-Rosen Paradox

    Get PDF
    We demonstrate the appearance of Einstein-Podolsky-Rosen (EPR) paradox when a radiation field impinges on a movable mirror. The, the possibility of a local realism test within a pendular Fabry-Perot cavity is shown to be feasible.Comment: 4 pages ReVTeX, 1 eps figur

    Bosonic Memory Channels

    Full text link
    We discuss a Bosonic channel model with memory effects. It relies on a multi-mode squeezed (entangled) environment's state. The case of lossy Bosonic channels is analyzed in detail. We show that in the absence of input energy constraints the memory channels are equivalent to their memoryless counterparts. In the case of input energy constraint we provide lower and upper bounds for the memory channel capacity.Comment: 6 pages, 2 figure

    A solution of the Gaussian optimizer conjecture

    Full text link
    The long-standing conjectures of the optimality of Gaussian inputs for Gaussian channel and Gaussian additivity are solved for a broad class of covariant or contravariant Bosonic Gaussian channels (which includes in particular thermal, additive classical noise, and amplifier channels) restricting to the class of states with finite second moments. We show that the vacuum is the input state which minimizes the entropy at the output of such channels. This allows us to show also that the classical capacity of these channels (under the input energy constraint) is additive and is achieved by Gaussian encodings.Comment: 24 pages, no figures (minor typos corrected

    Selective writing and read-out of a register of static qubits

    Get PDF
    We propose a setup comprising an arbitrarily large array of static qubits (SQs), which interact with a flying qubit (FQ). The SQs work as a quantum register, which can be written or read-out by means of the FQ through quantum state transfer (QST). The entire system, including the FQ's motional degrees of freedom, behaves quantum mechanically. We demonstrate a strategy allowing for selective QST between the FQ and a single SQ chosen from the register. This is achieved through a perfect mirror located beyond the SQs and suitable modulation of the inter-SQ distances.Comment: 14 pages, 4 figure

    Electronic Hong-Ou-Mandel interferometer for multi-mode entanglement detection

    Full text link
    We show that multi-mode entanglement of electrons in a mesoscopic conductor can be detected by a measurement of the zero-frequency current correlations in an electronic Hong-Ou-Mandel interferometer. By this mean, one can further establish a lower bound to the entanglement of formation of two-electron input states. Our results extend the work of Burkard and Loss [Phys. Rev. Lett. 91, 087903 (2003)] to many channels and provide a way to test the existence of entangled states involving both orbital and spin degrees of freedom.Comment: 6 pages. Revised version. Ref. adde

    Quantum MERA Channels

    Full text link
    Tensor networks representations of many-body quantum systems can be described in terms of quantum channels. We focus on channels associated with the Multi-scale Entanglement Renormalization Ansatz (MERA) tensor network that has been recently introduced to efficiently describe critical systems. Our approach allows us to compute the MERA correspondent to the thermodynamic limit of a critical system introducing a transfer matrix formalism, and to relate the system critical exponents to the convergence rates of the associated channels.Comment: 4 pages, 2 figure
    • ‚Ķ
    corecore