260 research outputs found

    Young Suns Exoplanet Survey: Detection of a wide-orbit planetary-mass companion to a solar-type Sco-Cen member

    Get PDF
    The Young Suns Exoplanet Survey consists of a homogeneous sample of 70 young, solar-mass stars located in the Lower Centaurus-Crux subgroup of the Scorpius-Centaurus association with an average age of 15 ± 3 Myr. We report the detection of a co-moving companion around the K3IV star TYC 8998-760-1 (2MASSJ13251211–6456207) that is located at a distance of 94.6 ± 0.3 pc using SPHERE/IRDIS on the VLT. Spectroscopic observations with VLT/X-SHOOTER constrain the mass of the star to 1.00±0.02M⊙ and an age of 16.7±1.4 Myr. The companion TYC 8998-760-1 b is detected at a projected separation of 1.71″, which implies a projected physical separation of 162 au. Photometric measurements ranging from Y to M band provide a mass estimate of 14±3 M_(jup) by comparison to BT-Settl and AMES-dusty isochrones, corresponding to a mass ratio of q = 0.013 ± 0.003 with respect to the primary. We rule out additional companions to TYC 8998-760-1 that are more massive than 12 M_(jup) and farther than 12 au away from the host. Future polarimetric and spectroscopic observations of this system with ground and space based observatories will facilitate testing of formation and evolution scenarios shaping the architecture of the circumstellar environment around this ‘young Sun’

    High-resolution observations of gas and dust around Mira using ALMA and SPHERE/ZIMPOL

    Get PDF
    The outflows of oxygen-rich asymptotic giant branch (AGB) stars are thought to be driven by radiation pressure due to the scattering of photons on relatively large grains, with sizes of tenths of microns. The details of the formation of dust in the extended atmospheres of these stars and, therefore, the mass-loss process, is still not well understood. Aims. We aim to constrain the distribution of the gas and the composition and properties of the dust grains that form in the inner circumstellar environment of the archetypal Mira variable o Cet. Methods. We obtained quasi-simultaneous observations using ALMA and SPHERE/ZIMPOL on the Very Large Telescope (VLT) to probe the distribution of gas and large dust grains, respectively. Results. The polarized light images show dust grains around Mira A, but also around the companion, Mira B, and a dust trail that connects the two sources. The ALMA observations show that dust around Mira A is contained in a high-gas-density region with a significant fraction of the grains that produce the polarized light located at the edge of this region. Hydrodynamical and wind-driving models show that dust grains form efficiently behind shock fronts caused by stellar pulsation or convective motions. The distance at which we observe the density decline (a few tens of au) is, however, significantly larger than expected for stellar-pulsation-induced shocks. Other possibilities for creating the high-gas-density region are a recent change in the mass-loss rate of Mira A or interactions with Mira B. We are not able to determine which of these scenarios is correct. We constrained the gas density, temperature, and velocity within a few stellar radii from the star by modelling the CO v = 1, J = 3-2 line. We find a mass (~3.8 \ub1 1.3) 7 104 M to be contained between the stellar millimetre photosphere, R338 GHz, and 4 R338 GHz. Our best-fit models with lower masses also reproduce the 13CO v = 0, J = 3-2 line emission from this region well. We find TiO2 and AlO abundances corresponding to 4.5% and <0.1% of the total titanium and aluminium expected for a gas with solar composition. The low abundance of AlO allows for a scenario in which Al depletion into dust happens already very close to the star, as expected from thermal dust emission observations and theoretical calculations of Mira variables. The relatively large abundance of aluminium for a gas with solar composition allows us to constrain the presence of aluminium oxide grains based on the scattered light observations and on the gas densities we obtain. These models imply that aluminium oxide grains could account for a significant fraction of the total aluminium atoms in this region only if the grains have sizes 0.02 μm. This is an order of magnitude smaller than the maximum sizes predicted by dust-formation and wind-driving models. Conclusions. The study we present highlights the importance of coordinated observations using different instruments to advance our understanding of dust nucleation, dust growth, and wind driving in AGB stars