78 research outputs found
Cooperative molecular motors moving back and forth
We use a two-state ratchet model to study the cooperative bidirectional
motion of molecular motors on cytoskeletal tracks with randomly alternating
polarities. Our model is based on a previously proposed model [Badoual et al.,
{\em Proc. Natl. Acad. Sci. USA} {\bf 99}, 6696 (2002)] for collective motor
dynamics and, in addition, takes into account the cooperativity effect arising
from the elastic tension that develops in the cytoskeletal track due to the
joint action of the walking motors. We show, both computationally and
analytically, that this additional cooperativity effect leads to a dramatic
reduction in the characteristic reversal time of the bidirectional motion,
especially in systems with a large number of motors. We also find that
bidirectional motion takes place only on (almost) a-polar tracks, while on even
slightly polar tracks the motion is unidirectional. We argue that the origin of
these observations is the sensitive dependence of the cooperative dynamics on
the difference between the number of motors typically working in and against
the instantaneous direction of motion.Comment: Accepted for publication in Phys. Rev.
Bidirectional cooperative motion of myosin-II motors on actin tracks with randomly alternating polarities
The cooperative action of many molecular motors is essential for dynamic
processes such as cell motility and mitosis. This action can be studied by
using motility assays in which the motion of cytoskeletal filaments over a
surface coated with motor proteins is tracked. In previous studies of
actin-myosin II systems, fast directional motion was observed, reflecting the
tendency of myosin II motors to propagate unidirectionally along actin
filaments. Here, we present a motility assay with actin bundles consisting of
short filamentous segments with randomly alternating polarities. These actin
tracks exhibit bidirectional motion with macroscopically large time intervals
(of the order of several seconds) between direction reversals. Analysis of this
bidirectional motion reveals that the characteristic reversal time,
, does not depend on the size of the moving bundle or on the number
of motors, . This observation contradicts previous theoretical calculations
based on a two-state ratchet model [Badoual et al., Proc. Natl. Acad. Sci. USA,
vol. 99, p. 6696 (2002)], predicting an exponential increase of
with . We present a modified version of this model that takes into account
the elastic energy due to the stretching of the actin track by the myosin II
motors. The new model yields a very good quantitative agreement with the
experimental results.Comment: A slightly revised version. Figures 2 and 7 were modified. Accepted
for publication in "Soft Matter
Charged Particle Pseudorapidity Distributions in Au+Al, Cu, Au, and U Collisions at 10.8 AGeV/c
We present the results of an analysis of charged particle pseudorapidity
distributions in the central region in collisions of a Au projectile with Al,
Cu, Au, and U targets at an incident energy of 10.8~GeV/c per nucleon. The
pseudorapidity distributions are presented as a function of transverse energy
produced in the target or central pseudorapidity regions. The correlation
between charged multiplicity and transverse energy measured in the central
region, as well as the target and projectile regions is also presented. We give
results for transverse energy per charged particle as a function of
pseudorapidity and centrality.Comment: 31 pages + 12 figures (compressed and uuencoded by uufiles), LATEX,
Submitted to PR
Event-by-event fluctuations in Mean and Mean in sqrt(s_NN) = 130 GeV Au+Au Collisions
Distributions of event-by-event fluctuations of the mean transverse momentum
and mean transverse energy near mid-rapidity have been measured in Au+Au
collisions at sqrt(s_NN) = 130 GeV at RHIC. By comparing the distributions to
what is expected for statistically independent particle emission, the magnitude
of non-statistical fluctuations in mean transverse momentum is determined to be
consistent with zero. Also, no significant non-random fluctuations in mean
transverse energy are observed. By constructing a fluctuation model with two
event classes that preserve the mean and variance of the semi-inclusive p_T or
e_T spectra, we exclude a region of fluctuations in sqrt(s_NN) = 130 GeV Au+Au
collisions.Comment: 10 pages, RevTeX 3, 7 figures, 4 tables, 307 authors, submitted to
Phys. Rev. C on 22 March 2002. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (will be made)
publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Measurement of the mid-rapidity transverse energy distribution from GeV Au+Au collisions at RHIC
The first measurement of energy produced transverse to the beam direction at
RHIC is presented. The mid-rapidity transverse energy density per participating
nucleon rises steadily with the number of participants, closely paralleling the
rise in charged-particle density, such that E_T / N_ch remains relatively
constant as a function of centrality. The energy density calculated via
Bjorken's prescription for the 2% most central Au+Au collisions at
sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of
1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).Comment: 307 authors, 6 pages, 4 figures, 1 table, submitted to PRL 4/18/2001;
revised version submitted to PRL 5/24/200
Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV
PHENIX has measured the centrality dependence of charged hadron p_T spectra
from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T
decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction
of the contribution from hard scattering to high p_T hadron production. For
central collisions the yield at high p_T is shown to be suppressed compared to
binary nucleon-nucleon collision scaling of p+p data. This suppression is
monotonically increasing with centrality, but most of the change occurs below
30% centrality, i.e. for collisions with less than about 140 participating
nucleons. The observed p_T and centrality dependence is consistent with the
particle production predicted by models including hard scattering and
subsequent energy loss of the scattered partons in the dense matter created in
the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to
Phys. Lett. B. Revised to address referee concerns. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Net Charge Fluctuations in Au + Au Interactions at sqrt(s_NN) = 130 GeV
Data from Au + Au interactions at sqrt(s_NN) = 130 GeV, obtained with the
PHENIX detector at RHIC, are used to investigate local net charge fluctuations
among particles produced near mid-rapidity. According to recent suggestions,
such fluctuations may carry information from the Quark Gluon Plasma. This
analysis shows that the fluctuations are dominated by a stochastic distribution
of particles, but are also sensitive to other effects, like global charge
conservation and resonance decays.Comment: 6 pages, RevTeX 3, 3 figures, 307 authors, submitted to Phys. Rev.
Lett. on 21 March, 2002. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (will be made) publicly
available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Flow Measurements via Two-particle Azimuthal Correlations in Au + Au Collisions at sqrt(s_NN) = 130 GeV
Two particle azimuthal correlation functions are presented for charged
hadrons produced in Au + Au collisions at RHIC sqrt(s_NN) = 130 GeV. The
measurements permit determination of elliptic flow without event-by-event
estimation of the reaction plane. The extracted elliptic flow values v_2 show
significant sensitivity to both the collision centrality and the transverse
momenta of emitted hadrons, suggesting rapid thermalization and relatively
strong velocity fields. When scaled by the eccentricity of the collision zone,
epsilon, the scaled elliptic flow shows little or no dependence on centrality
for charged hadrons with relatively low p_T. A breakdown of this epsilon
scaling is observed for charged hadrons with p_T > 1.0 GeV/c for the most
central collisions.Comment: 6 pages, RevTeX 3, 4 figures, 307 authors, submitted to Phys. Rev.
Lett. on 11 April 2002. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (will be made) publicly
available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Centrality Dependence of Charged Particle Multiplicity in Au-Au Collisions at sqrt(s_NN)=130 GeV
We present results for the charged-particle multiplicity distribution at
mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the
PHENIX detector at RHIC. For the 5% most central collisions we find
. The results,
analyzed as a function of centrality, show a steady rise of the particle
density per participating nucleon with centrality.Comment: 307 authors, 43 institutions, 6 pages, 4 figures, 1 table Minor
changes to figure labels and text to meet PRL requirements. One author added:
M. Hibino of Waseda Universit
- …