4 research outputs found
Bounds for avalanche critical values of the Bak-Sneppen model
We study the Bak-Sneppen model on locally finite transitive graphs , in
particular on Z^d and on T_Delta, the regular tree with common degree Delta. We
show that the avalanches of the Bak-Sneppen model dominate independent site
percolation, in a sense to be made precise. Since avalanches of the Bak-Sneppen
model are dominated by a simple branching process, this yields upper and lower
bounds for the so-called avalanche critical value . Our main
results imply that 1/(Delta+1) <= \leq p_c^{BS}(T_Delta) \leq 1/(Delta -1)1/(2d+1)\leq p_c^{BS}(Z^d)\leq 1/(2d)+ 1/(2d)^2+O(d^{-3}), as
d\to\infty.Comment: 19 page