2,949 research outputs found

    The very forward CASTOR calorimeter of the CMS experiment

    Get PDF
    The physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS experiment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1cm from the beam pipe, and at 14.4m from the CMS interaction point, covering the pseudorapidity range of -6.6 < η < -5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →μ⁺μ⁻K⁺K⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    Measurements of production cross sections of WZ and same-sign WW boson pairs in association with two jets in proton-proton collisions at √s = 13 TeV

    Get PDF
    The first measurements of production cross sections of polarized same-sign W±^{±} W±^{±} boson pairs in proton-proton collisions are reported. The measurements are based on a data sample collected with the CMS detector at the LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 137fb1^{-1}. Events are selected by requiring exactly two same-sign leptons, electrons or muons, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass to enhance the contribution of same-sign W±^{±} W±^{±} scattering events. An observed (expected) 95% confidence level upper limit of 1.17 (0.88) fbis set on the production cross section for longitudinally polarized same-sign W±^{±} W±^{±} boson pairs. The electroweak production of same-sign W±^{±} W±^{±} boson pairs with at least one of the W bosons longitudinally polarized is measured with an observed (expected) significance of 2.3 (3.1) standard deviations

    Combined searches for the production of supersymmetric top quark partners in proton–proton collisions at √s=13Te

    Get PDF
    A combination of searches for top squark pair production using proton–proton collision data at a center-of-mass energy of 13TeV at the CERN LHC, corresponding to an integrated luminosity of 137fb1^{-1} collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on the model, the combined result excludes a top squark mass up to 1325GeV for a massless neutralino, and a neutralino mass up to 700GeV for a top squark mass of 1150GeV. Top squarks with masses from 145 to 295GeV, for neutralino masses from 0 to 100GeV, with a mass difference between the top squark and the neutralino in a window of 30GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420GeV

    Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service

    Get PDF
    Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors

    Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton–proton collisions at √s=13TeV

    Get PDF
    A search for low-mass dilepton resonances in Higgs boson decays is conducted in the four-lepton final state. The decay is assumed to proceed via a pair of beyond the standard model particles, or one such particle and a Z boson. The search uses proton–proton collision data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 137 fb−1, at a center-of-mass energy √s = 13 TeV. No significant deviation from the standard model expectation is observed. Upper limits at 95% confidence level are set on model-independent Higgs boson decay branching fractions. Additionally, limits on dark photon and axion-like particle production, based on two specific models, are reported

    Performance of the CMS high-level trigger during LHC Run 2

    Get PDF
    The CERN LHC provided proton and heavy ion collisions during its Run 2 operation period from 2015 to 2018. Proton-proton collisions reached a peak instantaneous luminosity of 2.1 × 1034 cm−2s−1, twice the initial design value, at √ = 13 TeV . The CMS experiment records a subset of the collisions for further processing as part of its online selection of data for physics analyses, using a two-level trigger system: the Level-1 trigger, implemented in custom-designed electronics, and the high-level trigger, a streamlined version of the offline reconstruction software running on a large computer farm. This paper presents the performance of the CMS high-level trigger system during LHC Run 2 for physics objects, such as leptons, jets, and missing transverse momentum, which meet the broad needs of the CMS physics program and the challenge of the evolving LHC and detector conditions. Sophisticated algorithms that were originally used in offline reconstruction were deployed online. Highlights include a machine-learning b tagging algorithm and a reconstruction algorithm for tau leptons that decay hadronically

    Evidence for WW/WZ vector boson scattering in the decay channel lνqq produced in association with two jets in proton-proton collisions at √s=13TeV

    Get PDF
    Evidence is reported for electroweak (EW) vector boson scattering in the decay channel l nu qq of two weak vector bosons WV(V = Wor Z), produced in association with two parton jets. The search uses a data set of proton-proton collisions at 13TeVcollected with the CMS detector during 2016-2018 with an integrated luminosity of 138fb(-1). Events are selected requiring one lepton (electron or muon), moderate missing transverse momentum, two jets with a large pseudorapidity separation and a large dijet invariant mass, and a signature consistent with the hadronic decay of a W/Zboson. The cross section is computed in a fiducial phase space defined at parton level requiring all parton transverse momenta p(T)> 10 GeVand at least one pair of outgoing partons with invariant mass mqq> 100 GeV. The measured and expected EW WVproduction cross sections are 1.90(-0.46)(+0.5)3 pb and 2.23(-0.11)(+0.08)(scale) +/- 0.05(PDF) pb, respectively, where PDF is the parton distribution function. The observed EW signal strength is mu EW= 0.85 +/- 0.12 (stat)(-0.17)(+0.19)(syst), corresponding to a signal significance of 4.4 standard deviations with 5.1 expected, and it is measured keeping the quantum chromodynamics (QCD) associated diboson production fixed to the standard model prediction. This is the first evidence of vector boson scattering in the l nu qq decay channel at LHC. The simultaneous measurement of the EW and QCD associated diboson production agrees with the standard model prediction. (C) 2022 The Author(s). Published by Elsevier B.V

    Evidence for WW/WZ vector boson scattering in the decay channel ℓνqq produced in association with two jets in proton-proton collisions at √s = 13 TeVV