395 research outputs found
Manifestly Gauge-Invariant General Relativistic Perturbation Theory: II. FRW Background and First Order
In our companion paper we identified a complete set of manifestly
gauge-invariant observables for general relativity. This was possible by
coupling the system of gravity and matter to pressureless dust which plays the
role of a dynamically coupled observer. The evolution of those observables is
governed by a physical Hamiltonian and we derived the corresponding equations
of motion. Linear perturbation theory of those equations of motion around a
general exact solution in terms of manifestly gauge invariant perturbations was
then developed. In this paper we specialise our previous results to an FRW
background which is also a solution of our modified equations of motion. We
then compare the resulting equations with those derived in standard
cosmological perturbation theory (SCPT). We exhibit the precise relation
between our manifestly gauge-invariant perturbations and the linearly
gauge-invariant variables in SCPT. We find that our equations of motion can be
cast into SCPT form plus corrections. These corrections are the trace that the
dust leaves on the system in terms of a conserved energy momentum current
density. It turns out that these corrections decay, in fact, in the late
universe they are negligible whatever the value of the conserved current. We
conclude that the addition of dust which serves as a test observer medium,
while implying modifications of Einstein's equations without dust, leads to
acceptable agreement with known results, while having the advantage that one
now talks about manifestly gauge-invariant, that is measurable, quantities,
which can be used even in perturbation theory at higher orders.Comment: 51 pages, no figure
Algebraic Quantum Gravity (AQG) III. Semiclassical Perturbation Theory
In the two previous papers of this series we defined a new combinatorical
approach to quantum gravity, Algebraic Quantum Gravity (AQG). We showed that
AQG reproduces the correct infinitesimal dynamics in the semiclassical limit,
provided one incorrectly substitutes the non -- Abelean group SU(2) by the
Abelean group in the calculations. The mere reason why that
substitution was performed at all is that in the non -- Abelean case the volume
operator, pivotal for the definition of the dynamics, is not diagonisable by
analytical methods. This, in contrast to the Abelean case, so far prohibited
semiclassical computations. In this paper we show why this unjustified
substitution nevertheless reproduces the correct physical result: Namely, we
introduce for the first time semiclassical perturbation theory within AQG (and
LQG) which allows to compute expectation values of interesting operators such
as the master constraint as a power series in with error control. That
is, in particular matrix elements of fractional powers of the volume operator
can be computed with extremely high precision for sufficiently large power of
in the expansion. With this new tool, the non -- Abelean
calculation, although technically more involved, is then exactly analogous to
the Abelean calculation, thus justifying the Abelean analysis in retrospect.
The results of this paper turn AQG into a calculational discipline
Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation
The properties of the Volume operator in Loop Quantum Gravity, as constructed
by Ashtekar and Lewandowski, are analyzed for the first time at generic
vertices of valence greater than four. The present analysis benefits from the
general simplified formula for matrix elements of the Volume operator derived
in gr-qc/0405060, making it feasible to implement it on a computer as a matrix
which is then diagonalized numerically. The resulting eigenvalues serve as a
database to investigate the spectral properties of the volume operator.
Analytical results on the spectrum at 4-valent vertices are included. This is a
companion paper to arXiv:0706.0469, providing details of the analysis presented
there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008.
More compact presentation. Sign factor combinatorics now much better
understood in context of oriented matroids, see arXiv:1003.2348, where also
important remarks given regarding sigma configurations. Subsequent
computations revealed some minor errors, which do not change qualitative
results but modify some numbers presented her
Eigenvalues of the volume operator in loop quantum gravity
We present a simple method to calculate certain sums of the eigenvalues of
the volume operator in loop quantum gravity. We derive the asymptotic
distribution of the eigenvalues in the classical limit of very large spins
which turns out to be of a very simple form. The results can be useful for
example in the statistical approach to quantum gravity.Comment: 12 pages, version accepted in Class. Quantum Gra
Properties of the Volume Operator in Loop Quantum Gravity I: Results
We analyze the spectral properties of the volume operator of Ashtekar and
Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the
classical volume expression for regions in three dimensional Riemannian space.
Our analysis considers for the first time generic graph vertices of valence
greater than four. Here we find that the geometry of the underlying vertex
characterizes the spectral properties of the volume operator, in particular the
presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is
found to depend on the vertex embedding. We compute the set of all
non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of
valence 5--7, and argue that these sets can be used to label spatial
diffeomorphism invariant states. We observe how gauge invariance connects
vertex geometry and representation properties of the underlying gauge group in
a natural way. Analytical results on the spectrum on 4-valent vertices are
included, for which the presence of a volume gap is proved. This paper presents
our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper
arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348
for important remarks regarding the sigma configurations. Subsequent
computations have revealed some minor errors, which do not change the
qualitative results but modify some of the numbers presented her
On a partially reduced phase space quantisation of general relativity conformally coupled to a scalar field
The purpose of this paper is twofold: On the one hand, after a thorough
review of the matter free case, we supplement the derivations in our companion
paper on 'loop quantum gravity without the Hamiltonian constraint' with
calculational details and extend the results to standard model matter, a
cosmological constant, and non-compact spatial slices. On the other hand, we
provide a discussion on the role of observables, focussed on the situation of a
symmetry exchange, which is key to our derivation. Furthermore, we comment on
the relation of our model to reduced phase space quantisations based on
deparametrisation.Comment: 51 pages, 5 figures. v2: Gauge condition used shown to coincide with
CMC gauge. Minor clarifications and correction
On the Relation between Operator Constraint --, Master Constraint --, Reduced Phase Space --, and Path Integral Quantisation
Path integral formulations for gauge theories must start from the canonical
formulation in order to obtain the correct measure. A possible avenue to derive
it is to start from the reduced phase space formulation. In this article we
review this rather involved procedure in full generality. Moreover, we
demonstrate that the reduced phase space path integral formulation formally
agrees with the Dirac's operator constraint quantisation and, more
specifically, with the Master constraint quantisation for first class
constraints. For first class constraints with non trivial structure functions
the equivalence can only be established by passing to Abelian(ised) constraints
which is always possible locally in phase space. Generically, the correct
configuration space path integral measure deviates from the exponential of the
Lagrangian action. The corrections are especially severe if the theory suffers
from second class secondary constraints. In a companion paper we compute these
corrections for the Holst and Plebanski formulations of GR on which current
spin foam models are based.Comment: 43 page
Loop quantum gravity without the Hamiltonian constraint
We show that under certain technical assumptions, including the existence of
a constant mean curvature (CMC) slice and strict positivity of the scalar
field, general relativity conformally coupled to a scalar field can be
quantised on a partially reduced phase space, meaning reduced only with respect
to the Hamiltonian constraint and a proper gauge fixing. More precisely, we
introduce, in close analogy to shape dynamics, the generator of a local
conformal transformation acting on both, the metric and the scalar field, which
coincides with the CMC gauge condition. A new metric, which is invariant under
this transformation, is constructed and used to define connection variables
which can be quantised by standard loop quantum gravity methods. While it is
hard to address dynamical problems in this framework (due to the complicated
'time' function), it seems, due to good accessibility properties of the CMC
gauge, to be well suited for problems such as the computation of black hole
entropy, where actual physical states can be counted and the dynamics is only
of indirect importance. The corresponding calculation yields the surprising
result that the usual prescription of fixing the Barbero-Immirzi parameter beta
to a constant value in order to obtain the well-known formula S = a(Phi) A/(4G)
does not work for the black holes under consideration, while a recently
proposed prescription involving an analytic continuation of beta to the case of
a self-dual space-time connection yields the correct result. Also, the
interpretation of the geometric operators gets an interesting twist, which
exemplifies the deep relationship between observables and the choice of a time
function and has consequences for loop quantum cosmology.Comment: 8 pages. v2: Journal version. Black hole state counting based on
physical states added. Applications to loop quantum cosmology discussed.
Gauge condition used shown to coincide with CMC gauge. Minor clarifications.
v3: Erroneous topology dependence of the entropy in journal version
corrected, conclusions fixed accordingly. Main results unaffecte
Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity
We analyze combinatorial structures which play a central role in determining
spectral properties of the volume operator in loop quantum gravity (LQG). These
structures encode geometrical information of the embedding of arbitrary valence
vertices of a graph in 3-dimensional Riemannian space, and can be represented
by sign strings containing relative orientations of embedded edges. We
demonstrate that these signature factors are a special representation of the
general mathematical concept of an oriented matroid. Moreover, we show that
oriented matroids can also be used to describe the topology (connectedness) of
directed graphs. Hence the mathematical methods developed for oriented matroids
can be applied to the difficult combinatorics of embedded graphs underlying the
construction of LQG. As a first application we revisit the analysis of [4-5],
and find that enumeration of all possible sign configurations used there is
equivalent to enumerating all realizable oriented matroids of rank 3, and thus
can be greatly simplified. We find that for 7-valent vertices having no
coplanar triples of edge tangents, the smallest non-zero eigenvalue of the
volume spectrum does not grow as one increases the maximum spin \jmax at the
vertex, for any orientation of the edge tangents. This indicates that, in
contrast to the area operator, considering large \jmax does not necessarily
imply large volume eigenvalues. In addition we give an outlook to possible
starting points for rewriting the combinatorics of LQG in terms of oriented
matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos
corrected, presentation slightly extende
Regularized Hamiltonians and Spinfoams
We review a recent proposal for the regularization of the scalar constraint
of General Relativity in the context of LQG. The resulting constraint presents
strengths and weaknesses compared to Thiemann's prescription. The main
improvement is that it can generate the 1-4 Pachner moves and its matrix
elements contain 15j Wigner symbols, it is therefore compatible with the
spinfoam formalism: the drawback is that Thiemann anomaly free proof is spoiled
because the nodes that the constraint creates have volume.Comment: 4 pages, based on a talk given at Loops '11 in Madrid, to appear in
Journal of Physics: Conference Series (JPCS
- …
