8 research outputs found

    The nature of the Island and Banana States in Atoll sources and a Unified Model for Low Mass X-ray Binaries

    Full text link
    We propose an explanation of the Island and Banana states and the relation between Atoll and Z-track sources, constituting a unified model for Low Mass X-ray Binaries (LMXB). We find a dramatic transition at a luminosity of 1 - 2.10^{37} erg/s above which the high energy cut-off E_CO of the Comptonized emission in all sources is low at a few keV. There is thermal equilibrium between the neutron star at ~2 keV and the Comptonizing accretion disk corona (ADC) causing the low E_CO in the Banana state of Atolls and all states of the Z-track sources. Below this luminosity, E_CO increases towards 100 keV causing the hardness of the island state. Thermal equilibrium is lost, the ADC becoming much hotter than the neutron star via an additional coronal heating mechanism. This suggests a unified model of LMXB: the Banana state is a basic state with the mass accretion rate Mdot increasing, corresponding to the Normal Branch of Z-track sources. The Island state has high ADC temperature, this state not existing in the Z-track sources with luminosities much greater than the critical value. The Z-track sources have an additional flaring branch consistent with unstable nuclear burning on the neutron star at high Mdot. This burning regime does not exist at low Mdot so this branch is not seen in Atolls (except GX Atolls). The Horizontal Branch in Z-track sources has a strong increase in radiation pressure disrupting the inner disk and launching relativistic jets.Comment: 15 pages, 11 figures, accepted by MNRA

    Spectral Investigations of the nature of the Sco X-1 like sources

    Get PDF
    We present results of spectral investigations of the Sco X-1 like Z-track sources Sco X-1, GX 349+2 and GX 17+2 based on Rossi-XTE observations using an extended accretion disk corona model. The results are compared with previous results for the Cyg X-2 like group: Cyg X-2, GX 340+0 and GX 5-1 and a general model for the Z-track sources proposed. On the normal branch, the Sco-like and Cyg-like sources are similar, the results indicating an increase of mass accretion rate Mdot between soft and hard apex, not as in the standard view that this increases around the Z. In the Cyg-like sources, increasing Mdot causes the neutron star temperature kT to increase from ~1 to ~2 keV. At the lower kT, the radiation pressure is small, but at the higher kT, the emitted flux of the neutron star is several times super-Eddington and the high radiation pressure disrupts the inner disk launching the relativistic jets observed on the upper normal and horizontal branches. In the Sco-like sources, the main physical difference is the high kT of more than 2 keV on all parts of the Z-track suggesting that jets are always possible, even on the flaring branch. The flaring branch in the Cyg-like sources is associated with release of energy on the neutron star consistent with unstable nuclear burning. The Sco-like sources are very different as flaring appears to be a combination of unstable burning and an increase of Mdot which makes flaring much stronger. Analysis of 15 years or RXTE ASM data on all 6 classic Z-track sources shows the high rate and strength of flaring in the Sco-like sources suggesting that continual release of energy heats the neutron star causing the high kT. A Sco X-1 observation with unusually little flaring supports this. GX 17+2 appears to be transitional between the Cyg and Sco-like types. Our results do not support the suggestion that Cyg or Sco-like nature is determined by luminosity.Comment: Astronomy and Astrophysics in press; 21 pages, 13 figure

    On the nature of the Cygnus X-2 like Z-track sources

    Get PDF
    Based on the results of applying the extended ADC emission model for low mass X-ray binaries to three Z-track sources: GX340+0, GX5-1 and CygX-2, we propose an explanation of the CygnusX-2 like Z-track sources. The Normal Branch is dominated by the increasing radiation pressure of the neutron star caused by a mass accretion rate that increases between the soft apex and the hard apex. The radiation pressure continues to increase on the Horizontal Branch becoming several times super-Eddington. We suggest that this disrupts the inner accretion disk and that part of the accretion flow is diverted vertically forming jets which are detected by their radio emission on this part of the Z-track. We thus propose that high radiation pressure is the necessary condition for the launching of jets. On the Flaring Branch there is a large increase in the neutron star blackbody luminosity at constant mass accretion rate indicating an additional energy source on the neutron star. We find that there is good agreement between the mass accretion rate per unit emitting area of the neutron star mdot at the onset of flaring and the theoretical critical value at which burning becomes unstable. We thus propose that flaring in the CygnusX-2 like sources consists of unstable nuclear burning. Correlation of measurements of kilohertz QPO frequencies in all three sources with spectral fitting results leads to the proposal that the upper kHz QPO is an oscillation always taking place at the inner accretion disk edge, the radius of which increases due to disruption of the disk by the high radiation pressure of the neutron star.Comment: Astronomy and Astrophysics, in pres

    Dipping -versus Flaring in Z-track sources: resolving the controversy

    Full text link
    We review the longterm confusion which has existed over the nature of flaring in the brightest class of low mass X-ray binary: the Z-track sources, specifically in the Cygnus X-2 sub-group. Intensity reductions in the lightcurve produce a branch in colour -colour diagrams similar to that of real flares in the Sco X-1 like group, and the nature of this branch was not clear. However, based on observations of Cygnus X-2 in which this dipping/flaring occurred it was proposed that the mass accretion rate in Z-track sources in general increases monotonically along the Z-track towards the Flaring Branch, a standard assumption widely held. It was also suggested that the Cygnus X-2 group have high inclination. Based on recent multi-wavelength observations of Cygnus X-2 we resolve these issues, showing by spectral analysis that the Dipping Branch consists of absorption events in the outer disk, unrelated to the occasional real flaring in the source. Thus motivation for Mdot increasing along the Z from Horizontal - Normal to Flaring Branch is removed, as is the idea that high inclination distinguishes the Cygnus X-2 group. Finally, the observations provide further evidence for the extended nature of the Accretion Disk Corona (ADC), and the correct modelling of the ADC Comptonized emission is crucial to the interpretation of low mass X-ray binary data.Comment: 8 pages, 15 figures; review paper presented at the Frascati Workshop 2011 "Multifrequency behaviour of high energy cosmic sources"; Mem. S. A. It. in pres

    Dipping in CygnusX-2 in a multi-wavelength campaign due to absorption of extended ADC emission

    Get PDF
    We report results of one-day simultaneous multiwavelength observations of CygnusX-2 using XMM, Chandra, the European VLBI Network and the XMM Optical Monitor. During the observations, the source did not exhibit Z-track movement, but remained in the vicinity of the soft apex. It was in a radio quiescent/quiet state of  60° these structures can still cover large parts of the extended ADC, without absorbing emission from the central neutral star

    Fault Detection Enhancement in Rolling Element Bearings Using the Minimum Entropy Deconvolution

    No full text
    Minimum Entropy Deconvolution (MED) has been recently introduced to the machine condition mon- itoring field to enhance fault detection in rolling element bearings and gears. MED proved to be an excellent aid to the extraction of these impulses and diagnosing their origin, i.e. the defective component of the bearing. In this paper, MED is revisited and re-introduced with further insights into its application to fault detection and diagnosis in rolling element bearings. The MED parameter selection as well as its combination with pre-whitening is discussed. Two main cases are presented to illustrate the benefits of the MED technique. The first one was taken from a fan bladed test rig. The second case was taken from a wind turbine with an inner race fault. The usage of the MED technique has shown a strong enhancement for both fault detection and diagnosis. The paper contributes to the knowledge of fault detection of rolling element bearings through providing an insight into the usage of MED in rolling element bearings diag- nostic. This provides a guide for the user to select optimum parameters for the MED filter and illustrates these on new interesting cases both from a lab environment and an actual case
    corecore