9 research outputs found

    Dextran-Functionalized Super-nanoparticle Assemblies of Quantum Dots for Enhanced Cellular Immunolabeling and Imaging

    No full text
    Colloidal semiconductor quantum dots (QDs) are a popular material for applications in bioanalysis and imaging. Although individual QDs are bright, some applications benefit from the use of even brighter materials. One approach to achieve higher brightness is to form super-nanoparticle (super-NP) assemblies of many QDs. Here, we present the preparation, characterization, and utility of dextran-functionalized super-NP assemblies of QDs. Amphiphilic dextran was synthesized and used to encapsulate many hydrophobic QDs via a simple emulsion-based method. The resulting super-NP assemblies or “super-QDs” had hydrodynamic diameters of ca. 90–160 nm, were characterized at the ensemble and single-particle levels, had orders-of-magnitude superior brightness compared to individual QDs, and were non-blinking. Additionally, binary mixtures of red, green, and blue (RGB) colors of QDs were used to prepare super-QDs, including colors difficult to obtain from individual QDs (e.g., magenta). Tetrameric antibody complexes (TACs) enabled simple antibody conjugation for selective cellular immunolabeling and imaging with both an epifluorescence microscope and a smartphone-based platform. The technical limitations of the latter platform were overcome by the increased per-particle brightness of the super-QDs, and the super-QDs outperformed individual QDs in both cases. Overall, the super-QDs are a very promising material for bioanalysis and imaging applications where brightness is paramount

    Complex Photobleaching Behavior of Semiconducting Polymer Dots

    No full text
    Semiconducting polymer dots (Pdots) are a type of conjugated polymer (CP) nanoparticle with highly advantageous fluorescence properties and a growing breadth of applications in bioanalysis and imaging. Exceptional brightness is a widely demonstrated advantage of Pdots. Resistance to photobleaching (PB) is an often-touted advantage but is far less studied. Here, we present a detailed study on the PB of Pdots. The effects of the particle size, pH, oxygen level, and anti-fade agents on PB were examined through ensemble and single-particle fluorescence measurements for multiple Pdot compositions. Physical changes during PB were assessed by nanoparticle tracking analysis, gel electrophoresis, Förster resonance energy transfer, and other fluorescence quenching experiments. Spectral shifts, increases in the fluorescence lifetime, reductions in quantum yield, and changes in electrophoretic mobility were some of the properties observed to vary upon PB. Loss of fluorescence under continuous illumination was from formal bleaching and also from the introduction of quenching mechanisms. Oxygen-dependent and oxygen-independent mechanisms of PB were suggested by the data, with the balance of these mechanisms dependent on both the CP and the illumination intensity. The oxygen-independent mechanism appeared to be intrinsic to the volume of the CP and may be limited by exciton–exciton annihilation at high illumination intensity. The oxygen-dependent mechanism appeared to bleach the Pdots from the surface of the particle inward, forming a bleached shell, and introduced new functional groups. Overall, the PB of Pdots was a complex process with photophysical and chemical alterations, and homogeneous and heterogeneous effects, dependent on particle properties and experimental conditions. Changes induced by PB have implications for many biological applications of Pdots, and the results of this study will help guide the development of Pdot materials with greater resistance toward bleaching

    Prototype Smartphone-Based Device for Flow Cytometry with Immunolabeling via Supra-nanoparticle Assemblies of Quantum Dots

    No full text
    Methods for the detection, enumeration, and typing of cells are important in many areas of research and healthcare. In this context, flow cytometers are a widely used research and clinical tool but are also an example of a large and expensive instrument that is limited to specialized laboratories. Smartphones have been shown to have excellent potential to serve as portable and lower-cost platforms for analyses that would normally be done in a laboratory. Here, we developed a prototype smartphone-based flow cytometer (FC). This compact 3D-printed device incorporated a laser diode and a microfluidic flow cell and used the built-in camera of a smartphone to track immunofluorescently labeled cells in suspension and measure their color. This capability was enabled by high-brightness supra-nanoparticle assemblies of colloidal semiconductor quantum dots (SiO2@QDs) as well as a support vector machine (SVM) classification algorithm. The smartphone-based FC device detected and enumerated target cells against a background of other cells, simultaneously and selectively counted two different cell types in a mixture, and used multiple colors of SiO2@QD-antibody conjugates to screen for and identify a particular cell type. The potential limits of multicolor detection are discussed alongside ideas for further development. Our results suggest that innovations in materials and engineering should enable eventual smartphone-based FC assays for clinical applications

    Prototype Smartphone-Based Device for Flow Cytometry with Immunolabeling via Supra-nanoparticle Assemblies of Quantum Dots

    No full text
    Methods for the detection, enumeration, and typing of cells are important in many areas of research and healthcare. In this context, flow cytometers are a widely used research and clinical tool but are also an example of a large and expensive instrument that is limited to specialized laboratories. Smartphones have been shown to have excellent potential to serve as portable and lower-cost platforms for analyses that would normally be done in a laboratory. Here, we developed a prototype smartphone-based flow cytometer (FC). This compact 3D-printed device incorporated a laser diode and a microfluidic flow cell and used the built-in camera of a smartphone to track immunofluorescently labeled cells in suspension and measure their color. This capability was enabled by high-brightness supra-nanoparticle assemblies of colloidal semiconductor quantum dots (SiO2@QDs) as well as a support vector machine (SVM) classification algorithm. The smartphone-based FC device detected and enumerated target cells against a background of other cells, simultaneously and selectively counted two different cell types in a mixture, and used multiple colors of SiO2@QD-antibody conjugates to screen for and identify a particular cell type. The potential limits of multicolor detection are discussed alongside ideas for further development. Our results suggest that innovations in materials and engineering should enable eventual smartphone-based FC assays for clinical applications

    Prototype Smartphone-Based Device for Flow Cytometry with Immunolabeling via Supra-nanoparticle Assemblies of Quantum Dots

    No full text
    Methods for the detection, enumeration, and typing of cells are important in many areas of research and healthcare. In this context, flow cytometers are a widely used research and clinical tool but are also an example of a large and expensive instrument that is limited to specialized laboratories. Smartphones have been shown to have excellent potential to serve as portable and lower-cost platforms for analyses that would normally be done in a laboratory. Here, we developed a prototype smartphone-based flow cytometer (FC). This compact 3D-printed device incorporated a laser diode and a microfluidic flow cell and used the built-in camera of a smartphone to track immunofluorescently labeled cells in suspension and measure their color. This capability was enabled by high-brightness supra-nanoparticle assemblies of colloidal semiconductor quantum dots (SiO2@QDs) as well as a support vector machine (SVM) classification algorithm. The smartphone-based FC device detected and enumerated target cells against a background of other cells, simultaneously and selectively counted two different cell types in a mixture, and used multiple colors of SiO2@QD-antibody conjugates to screen for and identify a particular cell type. The potential limits of multicolor detection are discussed alongside ideas for further development. Our results suggest that innovations in materials and engineering should enable eventual smartphone-based FC assays for clinical applications

    Prototype Smartphone-Based Device for Flow Cytometry with Immunolabeling via Supra-nanoparticle Assemblies of Quantum Dots

    No full text
    Methods for the detection, enumeration, and typing of cells are important in many areas of research and healthcare. In this context, flow cytometers are a widely used research and clinical tool but are also an example of a large and expensive instrument that is limited to specialized laboratories. Smartphones have been shown to have excellent potential to serve as portable and lower-cost platforms for analyses that would normally be done in a laboratory. Here, we developed a prototype smartphone-based flow cytometer (FC). This compact 3D-printed device incorporated a laser diode and a microfluidic flow cell and used the built-in camera of a smartphone to track immunofluorescently labeled cells in suspension and measure their color. This capability was enabled by high-brightness supra-nanoparticle assemblies of colloidal semiconductor quantum dots (SiO2@QDs) as well as a support vector machine (SVM) classification algorithm. The smartphone-based FC device detected and enumerated target cells against a background of other cells, simultaneously and selectively counted two different cell types in a mixture, and used multiple colors of SiO2@QD-antibody conjugates to screen for and identify a particular cell type. The potential limits of multicolor detection are discussed alongside ideas for further development. Our results suggest that innovations in materials and engineering should enable eventual smartphone-based FC assays for clinical applications

    Prototype Smartphone-Based Device for Flow Cytometry with Immunolabeling via Supra-nanoparticle Assemblies of Quantum Dots

    No full text
    Methods for the detection, enumeration, and typing of cells are important in many areas of research and healthcare. In this context, flow cytometers are a widely used research and clinical tool but are also an example of a large and expensive instrument that is limited to specialized laboratories. Smartphones have been shown to have excellent potential to serve as portable and lower-cost platforms for analyses that would normally be done in a laboratory. Here, we developed a prototype smartphone-based flow cytometer (FC). This compact 3D-printed device incorporated a laser diode and a microfluidic flow cell and used the built-in camera of a smartphone to track immunofluorescently labeled cells in suspension and measure their color. This capability was enabled by high-brightness supra-nanoparticle assemblies of colloidal semiconductor quantum dots (SiO2@QDs) as well as a support vector machine (SVM) classification algorithm. The smartphone-based FC device detected and enumerated target cells against a background of other cells, simultaneously and selectively counted two different cell types in a mixture, and used multiple colors of SiO2@QD-antibody conjugates to screen for and identify a particular cell type. The potential limits of multicolor detection are discussed alongside ideas for further development. Our results suggest that innovations in materials and engineering should enable eventual smartphone-based FC assays for clinical applications

    Semiconducting Polymer Dots Directly Stabilized with Serum Albumin: Preparation, Characterization, and Cellular Immunolabeling

    No full text
    Semiconducting polymer dots (Pdots) are brightly fluorescent nanoparticles of growing interest for bioanalysis and imaging. A recurring challenge with these materials is obtaining robust physical and colloidal stability and low nonspecific binding. Here, we prepared and characterized Pdots with bovine serum albumin (BSA) as the stabilizing agent (BSA-Pdots) instead of a more conventionally used amphiphilic polymer, both without and with cross-linking of the protein using glutaraldehyde (BSA­(GA)-Pdots) or disuccinimidyl glutarate. Characterization included fluorescence properties; colloidal stability as a function of pH, ionic strength, and solvent perturbation; shape retention and hardness; and nonspecific binding with common assay substrates, fixed cells, and live cells. These properties were contrasted with the same properties for amphiphilic polymer-stabilized Pdots and silica-coated Pdots. On balance, the BSA-stabilized Pdots were similar or more favorable in their properties, with BSA­(GA)-Pdots being especially advantageous. Bioconjugation of the BSA-stabilized Pdots was possible using amine-reactive active-ester chemistry, including biotinylation and bioorthogonal functionalization for immunoconjugation via tetrazine-strained-alkene click chemistry. These approaches were used for selective fluorescent labeling of cells based on ligand–receptor and antibody–antigen binding, respectively. Overall, direct BSA stabilization is a very promising strategy for preparing Pdots with improved physical and colloidal stability, reduced nonspecific interactions, and utility for in vitro diagnostics and other bioanalyses and imaging

    Polymer Dots with Enhanced Photostability, Quantum Yield, and Two-Photon Cross-Section using Structurally Constrained Deep-Blue Fluorophores

    No full text
    Semiconducting polymer dots (Pdots) have emerged as versatile probes for bioanalysis and imaging at the single-particle level. Despite their utility in multiplexed analysis, deep blue Pdots remain rare due to their need for high-energy excitation and sensitivity to photobleaching. Here, we describe the design of deep blue fluorophores using structural constraints to improve resistance to photobleaching, two-photon absorption cross sections, and fluorescence quantum yields using the hexamethylazatriangulene motif. Scanning tunneling microscopy was used to characterize the electronic structure of these chromophores on the atomic scale as well as their intrinsic stability. The most promising fluorophore was functionalized with a polymerizable acrylate handle and used to give deep-blue fluorescent acrylic polymers with Mn > 18 kDa and Đ < 1.2. Nanoprecipitation with amphiphilic polystyrene-graft-(carboxylate-terminated poly­(ethylene glycol)) gave water-soluble Pdots with blue fluorescence, quantum yields of 0.81, and molar absorption coefficients of (4 ± 2) × 108 M–1 cm–1. This high brightness facilitated single-particle visualization with dramatically improved signal-to-noise ratio and photobleaching resistance versus an unencapsulated dye. The Pdots were then conjugated with antibodies for immunolabeling of SK-BR3 human breast cancer cells, which were imaged using deep blue fluorescence in both one- and two-photon excitation modes
    corecore