53 research outputs found

    The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity

    Full text link
    We investigate a family of isotropic volumetric-isochoric decoupled strain energies F↦WeH(F):=W^eH(U):={ΞΌk ek βˆ₯devnlog⁑Uβˆ₯2+ΞΊ2 k^ ek^ [tr(log⁑U)]2ifdetF>0,+∞ifdetF≀0, F\mapsto W_{_{\rm eH}}(F):=\widehat{W}_{_{\rm eH}}(U):=\left\{\begin{array}{lll} \frac{\mu}{k}\,e^{k\,\|{\rm dev}_n\log {U}\|^2}+\frac{\kappa}{{2\, {\widehat{k}}}}\,e^{\widehat{k}\,[{ \rm tr}(\log U)]^2}&\text{if}& { \rm det} F>0,\\ +\infty &\text{if} &{ \rm det} F\leq 0, \end{array}\right.\quad based on the Hencky-logarithmic (true, natural) strain tensor log⁑U\log U, where ΞΌ>0\mu>0 is the infinitesimal shear modulus, ΞΊ=2ΞΌ+3Ξ»3>0\kappa=\frac{2\mu+3\lambda}{3}>0 is the infinitesimal bulk modulus with Ξ»\lambda the first Lam\'{e} constant, k,k^k,\widehat{k} are dimensionless parameters, F=βˆ‡Ο†F=\nabla \varphi is the gradient of deformation, U=FTFU=\sqrt{F^T F} is the right stretch tensor and devnlog⁑U=log⁑Uβˆ’1ntr(log⁑U)β‹…1 ⁣ ⁣1{\rm dev}_n\log {U} =\log {U}-\frac{1}{n} {\rm tr}(\log {U})\cdot 1\!\!1 is the deviatoric part of the strain tensor log⁑U\log U. For small elastic strains, WeHW_{_{\rm eH}} approximates the classical quadratic Hencky strain energy F↦WH(F):=W^H(U):=μ βˆ₯devnlog⁑Uβˆ₯2+ΞΊ2 [tr(log⁑U)]2, F\mapsto W_{_{\rm H}}(F):=\widehat{W}_{_{\rm H}}(U):={\mu}\,\|{\rm dev}_n\log U\|^2+\frac{\kappa}{2}\,[{\rm tr}(\log U)]^2, which is not everywhere rank-one convex. In plane elastostatics, i.e. n=2n=2, we prove the everywhere rank-one convexity of the proposed family WeHW_{_{\rm eH}}, for kβ‰₯14k\geq \frac{1}{4} and k^β‰₯18\widehat{k}\geq \frac{1}{8}. Moreover, we show that the corresponding Cauchy (true)-stress-true-strain relation is invertible for n=2,3n=2,3 and we show the monotonicity of the Cauchy (true) stress tensor as a function of the true strain tensor in a domain of bounded distortions. We also prove that the rank-one convexity of the energies belonging to the family WeHW_{_{\rm eH}} is not preserved in dimension n=3n=3

    Linear constrained Cosserat-shell models including terms up to O(h5){O}(h^5). Conditional and unconditional existence and uniqueness

    Full text link
    In this paper we linearise the recently introduced geometrically nonlinear constrained Cosserat-shell model. In the framework of the linear constrained Cosserat-shell model, we provide a comparison of our linear models with the classical linear Koiter shell model and the "best" first order shell model. For all proposed linear models we show existence and uniqueness based on a Korn's inequality for surfaces.Comment: arXiv admin note: text overlap with arXiv:2208.04574, arXiv:2010.1430

    An ellipticity domain for the distortional Hencky-logarithmic strain energy

    Full text link
    We describe ellipticity domains for the isochoric elastic energy F↦βˆ₯devnlog⁑Uβˆ₯2=βˆ₯log⁑FTF(det⁑F)1/nβˆ₯2=14 βˆ₯log⁑C(detC)1/nβˆ₯2 F\mapsto \|{\rm dev}_n\log U\|^2=\bigg\|\log \frac{\sqrt{F^TF}}{(\det F)^{1/n}}\bigg\|^2 =\frac{1}{4}\,\bigg\|\log \frac{C}{({\rm det} C)^{1/n}}\bigg\|^2 for n=2,3n=2,3, where C=FTFC=F^TF for F∈GL+(n)F\in {\rm GL}^+(n). Here, devnlog⁑U=log⁑Uβˆ’1n tr(log⁑U)β‹…1 ⁣ ⁣1{\rm dev}_n\log {U} =\log {U}-\frac{1}{n}\, {\rm tr}(\log {U})\cdot 1\!\!1 is the deviatoric part of the logarithmic strain tensor log⁑U\log U. For n=2n=2 we identify the maximal ellipticity domain, while for n=3n=3 we show that the energy is Legendre-Hadamard elliptic in the set E3(WHiso,LH,U,23) := {U∈PSym(3)β€…β€Šβˆ£β€‰βˆ₯dev3log⁑Uβˆ₯2≀23}\mathcal{E}_3\bigg(W_{_{\rm H}}^{\rm iso}, {\rm LH}, U, \frac{2}{3}\bigg)\,:=\,\bigg\{U\in{\rm PSym}(3) \;\Big|\, \|{\rm dev}_3\log U\|^2\leq \frac{2}{3}\bigg\}, which is similar to the von-Mises-Huber-Hencky maximum distortion strain energy criterion. Our results complement the characterization of ellipticity domains for the quadratic Hencky energy WH(F)=μ βˆ₯dev3log⁑Uβˆ₯2+ΞΊ2 [tr(log⁑U)]2 W_{_{\rm H}}(F)=\mu \,\|{\rm dev}_3\log U\|^2+ \frac{\kappa}{2}\,[{\rm tr} (\log U)]^2 , U=FTFU=\sqrt{F^TF} with ΞΌ>0\mu>0 and ΞΊ>23 μ\kappa>\frac{2}{3}\, \mu, previously obtained by Bruhns et al
    • …