308 research outputs found
Modeling Dynamic Swarms
This paper proposes the problem of modeling video sequences of dynamic swarms
(DS). We define DS as a large layout of stochastically repetitive spatial
configurations of dynamic objects (swarm elements) whose motions exhibit local
spatiotemporal interdependency and stationarity, i.e., the motions are similar
in any small spatiotemporal neighborhood. Examples of DS abound in nature,
e.g., herds of animals and flocks of birds. To capture the local spatiotemporal
properties of the DS, we present a probabilistic model that learns both the
spatial layout of swarm elements and their joint dynamics that are modeled as
linear transformations. To this end, a spatiotemporal neighborhood is
associated with each swarm element, in which local stationarity is enforced
both spatially and temporally. We assume that the prior on the swarm dynamics
is distributed according to an MRF in both space and time. Embedding this model
in a MAP framework, we iterate between learning the spatial layout of the swarm
and its dynamics. We learn the swarm transformations using ICM, which iterates
between estimating these transformations and updating their distribution in the
spatiotemporal neighborhoods. We demonstrate the validity of our method by
conducting experiments on real video sequences. Real sequences of birds, geese,
robot swarms, and pedestrians evaluate the applicability of our model to real
world data.Comment: 11 pages, 17 figures, conference paper, computer visio
ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing
With the aim of developing a fast yet accurate algorithm for compressive
sensing (CS) reconstruction of natural images, we combine in this paper the
merits of two existing categories of CS methods: the structure insights of
traditional optimization-based methods and the speed of recent network-based
ones. Specifically, we propose a novel structured deep network, dubbed
ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm
(ISTA) for optimizing a general norm CS reconstruction model. To cast
ISTA into deep network form, we develop an effective strategy to solve the
proximal mapping associated with the sparsity-inducing regularizer using
nonlinear transforms. All the parameters in ISTA-Net (\eg nonlinear transforms,
shrinkage thresholds, step sizes, etc.) are learned end-to-end, rather than
being hand-crafted. Moreover, considering that the residuals of natural images
are more compressible, an enhanced version of ISTA-Net in the residual domain,
dubbed {ISTA-Net}, is derived to further improve CS reconstruction.
Extensive CS experiments demonstrate that the proposed ISTA-Nets outperform
existing state-of-the-art optimization-based and network-based CS methods by
large margins, while maintaining fast computational speed. Our source codes are
available: \textsl{http://jianzhang.tech/projects/ISTA-Net}.Comment: 10 pages, 6 figures, 4 Tables. To appear in CVPR 201
- β¦