66 research outputs found
Spatial database implementation of fuzzy region connection calculus for analysing the relationship of diseases
Analyzing huge amounts of spatial data plays an important role in many
emerging analysis and decision-making domains such as healthcare, urban
planning, agriculture and so on. For extracting meaningful knowledge from
geographical data, the relationships between spatial data objects need to be
analyzed. An important class of such relationships are topological relations
like the connectedness or overlap between regions. While real-world
geographical regions such as lakes or forests do not have exact boundaries and
are fuzzy, most of the existing analysis methods neglect this inherent feature
of topological relations. In this paper, we propose a method for handling the
topological relations in spatial databases based on fuzzy region connection
calculus (RCC). The proposed method is implemented in PostGIS spatial database
and evaluated in analyzing the relationship of diseases as an important
application domain. We also used our fuzzy RCC implementation for fuzzification
of the skyline operator in spatial databases. The results of the evaluation
show that our method provides a more realistic view of spatial relationships
and gives more flexibility to the data analyst to extract meaningful and
accurate results in comparison with the existing methods.Comment: ICEE201
Fuzzy Least Squares Twin Support Vector Machines
Least Squares Twin Support Vector Machine (LST-SVM) has been shown to be an
efficient and fast algorithm for binary classification. It combines the
operating principles of Least Squares SVM (LS-SVM) and Twin SVM (T-SVM); it
constructs two non-parallel hyperplanes (as in T-SVM) by solving two systems of
linear equations (as in LS-SVM). Despite its efficiency, LST-SVM is still
unable to cope with two features of real-world problems. First, in many
real-world applications, labels of samples are not deterministic; they come
naturally with their associated membership degrees. Second, samples in
real-world applications may not be equally important and their importance
degrees affect the classification. In this paper, we propose Fuzzy LST-SVM
(FLST-SVM) to deal with these two characteristics of real-world data. Two
models are introduced for FLST-SVM: the first model builds up crisp hyperplanes
using training samples and their corresponding membership degrees. The second
model, on the other hand, constructs fuzzy hyperplanes using training samples
and their membership degrees. Numerical evaluation of the proposed method with
synthetic and real datasets demonstrate significant improvement in the
classification accuracy of FLST-SVM when compared to well-known existing
versions of SVM
BigFCM: Fast, Precise and Scalable FCM on Hadoop
Clustering plays an important role in mining big data both as a modeling
technique and a preprocessing step in many data mining process implementations.
Fuzzy clustering provides more flexibility than non-fuzzy methods by allowing
each data record to belong to more than one cluster to some degree. However, a
serious challenge in fuzzy clustering is the lack of scalability. Massive
datasets in emerging fields such as geosciences, biology and networking do
require parallel and distributed computations with high performance to solve
real-world problems. Although some clustering methods are already improved to
execute on big data platforms, but their execution time is highly increased for
large datasets. In this paper, a scalable Fuzzy C-Means (FCM) clustering named
BigFCM is proposed and designed for the Hadoop distributed data platform. Based
on the map-reduce programming model, it exploits several mechanisms including
an efficient caching design to achieve several orders of magnitude reduction in
execution time. Extensive evaluation over multi-gigabyte datasets shows that
BigFCM is scalable while it preserves the quality of clustering
DHLP 1&2: Giraph based distributed label propagation algorithms on heterogeneous drug-related networks
Background and Objective: Heterogeneous complex networks are large graphs
consisting of different types of nodes and edges. The knowledge extraction from
these networks is complicated. Moreover, the scale of these networks is
steadily increasing. Thus, scalable methods are required. Methods: In this
paper, two distributed label propagation algorithms for heterogeneous networks,
namely DHLP-1 and DHLP-2 have been introduced. Biological networks are one type
of the heterogeneous complex networks. As a case study, we have measured the
efficiency of our proposed DHLP-1 and DHLP-2 algorithms on a biological network
consisting of drugs, diseases, and targets. The subject we have studied in this
network is drug repositioning but our algorithms can be used as general methods
for heterogeneous networks other than the biological network. Results: We
compared the proposed algorithms with similar non-distributed versions of them
namely MINProp and Heter-LP. The experiments revealed the good performance of
the algorithms in terms of running time and accuracy.Comment: Source code available for Apache Giraph on Hadoo
- …