296 research outputs found
Excitation of surface plasmons at a SiO2/Ag interface by silicon quantum dots: Experiment and theory
The excitation of surface plasmons (SPs) by optically excited silicon quantum dots (QDs) located near a Ag interface is studied both experimentally and theoretically for different QD-interface separations. The Si QDs are formed in the near-surface region of an SiO2 substrate by Si ion implantation and thermal annealing. Photoluminescence decay-rate distributions, as derived from an inverse Laplace transform of the measured decay trace, are determined for samples with and without a Ag cover layer. For the smallest, investigated Si-QDs-to-interface distance of 44 nm the average decay rate at lambda=750 nm is enhanced by 80% due to the proximity of the Ag-glass interface, with respect to an air-glass interface. Calculations based on a classical dipole oscillator model show that the observed decay rate enhancement is mainly due to the excitation of surface plasmons that are on the SiO2/Ag interface. By comparing the model calculations to the experimental data, it is determined that Si QDs have a very high internal emission quantum efficiency of (77±17)%. At this distance they can excite surface plasmons at a rate of (1.1±0.2)×104 s¿1. From the model it is also predicted that by using thin metal films the excitation of surface plasmons by Si QDs can be further enhanced. Si QDs are found to preferentially excite symmetric thin-film surface plasmons
Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion
The amplitude and phase evolution of ultrashort pulses in a bimodal waveguide structure has been studied with a time-resolved photon scanning tunneling microscope (PSTM). When waveguide modes overlap in time intriguing phase patterns are observed. Phase singularities, arising from interference between different modes, are normally expected at equidistant intervals determined by the difference in effective index for the two modes. However, in the pulsed experiments the distance between individual singularities is found to change not only within one measurement frame, but even depends strongly on the reference time. To understand this observation it is necessary to take into account that the actual pulses generating the interference signal change shape upon propagation through a dispersive medium. This implies that the spatial distribution of phase singularities contains direct information on local dispersion characteristics. At the same time also the mode profiles, wave vectors, pulse lengths, and group velocities of all excited modes in the waveguide are directly measured. The combination of these parameters with an analytical model for the time-resolved PSTM measurements shows that the unique spatial phase information indeed gives a direct measure for the group velocity dispersion of individual modes. As a result interesting and useful effects, such as pulse compression, pulse spreading, and pulse reshaping become accessible in a local measuremen
Pulse tracking in complex photonic structures
Time-resolved near-field microscopy allows the propagation of ultrafast pulses to be visualized en route while they travel through complex photonic structures. These measurements enable the unambiguous determination of both local phase and group velocities. We illustrate this powerful technique by tracking an ultrashort wavepacket as it completes several round trips in a ring resonator
The effect of H<sub>2</sub>S addition to methane on the ignition and oxidation at high pressures
Exploring the transferability of large supramolecular assemblies to the vacuum-solid interface
We present an interplay of high-resolution scanning tunneling microscopy imaging and the corresponding theoretical calculations based on elastic scattering quantum chemistry techniques of the adsorption of a gold-functionalized rosette assembly and its building blocks on a Au(111) surface with the goal of exploring how to fabricate functional 3-D molecular nanostructures on surfaces. The supramolecular rosette assembly stabilized by multiple hydrogen bonds has been sublimed onto the Au(111) surface under ultra-high vacuum conditions; the resulting surface nanostructures are distinctly different from those formed by the individual molecular building blocks of the rosette assembly, suggesting that the assembly itself can be transferred intact to the surface by in situ thermal sublimation. This unanticipated result will open up new perspectives for growth of complex 3-D supramolecular nanostructures at the vacuum-solid interface
Efficient light coupling into a photonic crystal waveguide with flatband slow mode
We design an efficient coupler to transmit light from a strip waveguide into
the flatband slow mode of a photonic crystal waveguide with ring-shaped holes.
The coupler is a section of a photonic crystal waveguide with a higher group
velocity, obtained by different ring dimensions. We demonstrate coupling
efficiency in excess of 95% over the 8 nm wavelength range where the photonic
crystal waveguide exhibits a quasi constant group velocity vg = c/37. An
analysis based on the small Fabry-P\'erot resonances in the simulated
transmission spectra is introduced and used for studying the effect of the
coupler length and for evaluating the coupling efficiency in different parts of
the coupler. The mode conversion efficiency within the coupler is more than
99.7% over the wavelength range of interest. The parasitic reflectance in the
coupler, which depends on the propagation constant mismatch between the slow
mode and the coupler mode, is lower than 0.6% within this wavelength range.Comment: 11 pages, 7 figures, submitted to Photonics and Nanostructures -
Fundamentals and Application
Experimental and Modeling Investigation of the Effectof H2S Addition to Methane on the Ignition and Oxidation at High Pressures
The
autoignition and oxidation behavior of CH<sub>4</sub>/H<sub>2</sub>S mixtures has been studied experimentally in a rapid compression
machine (RCM) and a high-pressure flow reactor. The RCM measurements
show that the addition of 1% H<sub>2</sub>S to methane reduces the
autoignition delay time by a factor of 2 at pressures ranging from
30 to 80 bar and temperatures from 930 to 1050 K. The flow reactor
experiments performed at 50 bar show that, for stoichiometric conditions,
a large fraction of H<sub>2</sub>S is already consumed at 600 K, while
temperatures above 750 K are needed to oxidize 10% methane. A detailed
chemical kinetic model has been established, describing the oxidation
of CH<sub>4</sub> and H<sub>2</sub>S as well as the formation and
consumption of organosulfuric species. Computations with the model
show good agreement with the ignition measurements, provided that
reactions of H<sub>2</sub>S and SH with peroxides (HO<sub>2</sub> and
CH<sub>3</sub>OO) are constrained. A comparison of the flow reactor
data to modeling predictions shows satisfactory agreement under stoichiometric
conditions, while at very reducing conditions, the model underestimates
the consumption of both H<sub>2</sub>S and CH<sub>4</sub>. Similar
to the RCM experiments, the presence of H<sub>2</sub>S is predicted
to promote oxidation of methane. Analysis of the calculations indicates
a significant interaction between the oxidation chemistry of H<sub>2</sub>S and CH<sub>4</sub>, but this chemistry is not well understood
at present. More work is desirable on the reactions of H<sub>2</sub>S and SH with peroxides (HO<sub>2</sub> and CH<sub>3</sub>OO) and
the formation and consumption of organosulfuric compounds
Nonlinear optics and light localization in periodic photonic lattices
We review the recent developments in the field of photonic lattices
emphasizing their unique properties for controlling linear and nonlinear
propagation of light. We draw some important links between optical lattices and
photonic crystals pointing towards practical applications in optical
communications and computing, beam shaping, and bio-sensing.Comment: to appear in Journal of Nonlinear Optical Physics & Materials (JNOPM
Shedding Light on Capillary-Based Backscattering Interferometry
Capillary-based backscattering interferometry has been used extensively as a tool to measure molecular binding via interferometric refractive index sensing. Previous studies have analysed the fringe patterns created in the backscatter direction. However, polarisation effects, spatial chirps in the fringe pattern and the practical impact of various approximations, and assumptions in existing models are yet to be fully explored. Here, two independent ray tracing approaches are applied, analysed, contrasted, compared to experimental data, and improved upon by introducing explicit polarisation dependence. In doing so, the significance of the inner diameter, outer diameter, and material of the capillary to the resulting fringe pattern and subsequent analysis are elucidated for the first time. The inner diameter is shown to dictate the fringe pattern seen, and therefore, the effectiveness of any dechirping algorithm, demonstrating that current dechirping methods are only valid for a subset of capillary dimensions. Potential improvements are suggested in order to guide further research, increase sensitivity, and promote wider applicability
- …
