6,443 research outputs found

    Mining Gravitational-wave Catalogs To Understand Binary Stellar Evolution: A New Hierarchical Bayesian Framework

    Get PDF
    Catalogs of stellar-mass compact binary systems detected by ground-based gravitational-wave instruments (such as Advanced LIGO and Advanced Virgo) will offer insights into the demographics of progenitor systems and the physics guiding stellar evolution. Existing techniques approach this through phenomenological modeling, discrete model selection, or model mixtures. Instead, we explore a novel technique that mines gravitational-wave catalogs to directly infer posterior probability distributions of the hyper-parameters describing formation and evolutionary scenarios (e.g. progenitor metallicity, kick parameters, and common-envelope efficiency). We use a bank of compact-binary population synthesis simulations to train a Gaussian-process emulator that acts as a prior on observed parameter distributions (e.g. chirp mass, redshift, rate). This emulator slots into a hierarchical population inference framework to extract the underlying astrophysical origins of systems detected by Advanced LIGO and Advanced Virgo. Our method is fast, easily expanded with additional simulations, and can be adapted for training on arbitrary population synthesis codes, as well as different detectors like LISA.Comment: 19 pages, 13 figures, 1 table. Matches version accepted by Physical Review

    Explaining LIGO's observations via isolated binary evolution with natal kicks

    Get PDF
    We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ200\sigma\simeq 200 (50) km/s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ\sigma is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models' compatibility with LIGO's observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ\sigma used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.Comment: 19 pages, 14 figures, as published in PR

    Communication: Hole localization in Al-doped quartz SiO2 within ab initio hybrid-functional DFT

    Get PDF
    We investigate the long-standing problem of the hole localization at the Al impurity in quartz SiO2_2, using a relatively recent DFT hybrid-functional method in which the exchange fraction is obtained \emph{ab initio}, based on an analogy with the static many-body COHSEX approximation to the electron self-energy. As the amount of the admixed exact exchange in hybrid functionals has been shown to be determinant for properly capturing the hole localization, this problem constitutes a prototypical benchmark for the accuracy of the method, allowing one to assess to what extent self-interaction effects are avoided. We obtain good results in terms of description of the charge localization and structural distortion around the Al center, improving with respect to the more popular B3LYP hybrid-functional approach. We also discuss the accuracy of computed hyperfine parameters, by comparison with previous calculations based on other self-interaction-free methods, as well as experimental values. We discuss and rationalize the limitations of our approach in computing defect-related excitation energies in low-dielectric-constant insulators.Comment: Accepted for publication in J. Chem. Phys. (Communications

    Homologation of the Fischer Indolization: A Quinoline Synthesis via Homo‐Diaza‐Cope Rearrangement

    Get PDF
    We disclose a new Brønsted acid promoted quinoline synthesis, proceeding via homo‐diaza‐Cope rearrangement of N‐aryl‐N′‐cyclopropyl hydrazines. Our strategy can be considered a homologation of Fischer's classical indole synthesis and delivers 6‐membered N‐heterocycles, including previously inaccessible pyridine derivatives. This approach can also be used as a pyridannulation methodology toward constructing polycyclic polyheteroaromatics. A computational analysis has been employed to probe plausible activation modes and to interrogate the role of the catalyst

    Inferring the properties of a population of compact binaries in presence of selection effects

    Full text link
    Shortly after a new class of objects is discovered, the attention shifts from the properties of the individual sources to the question of their origin: do all sources come from the same underlying population, or several populations are required? What are the properties of these populations? As the detection of gravitational waves is becoming routine and the size of the event catalog increases, finer and finer details of the astrophysical distribution of compact binaries are now within our grasp. This Chapter presents a pedagogical introduction to the main statistical tool required for these analyses: hierarchical Bayesian inference in the presence of selection effects. All key equations are obtained from first principles, followed by two examples of increasing complexity. Although many remarks made in this Chapter refer to gravitational-wave astronomy, the write-up is generic enough to be useful to researchers and graduate students from other fields.Comment: 57 pages. Chapter of "Handbook of Gravitational Wave Astronomy" (Eds. C. Bambi, S. Katsanevas and K. Kokkotas; Springer Singapore, 2021). Updated and revised w.r.t. v1. Includes new section (5.2). v2. adds back the glossary, that was lost in previous versio

    Fatigue behavior of foreign object damaged 7075 heat treated aluminum alloy coated with PVD WC/C

    Get PDF
    AbstractThe effect of a physically vapor deposited (PVD) WC/C coating on the fatigue behavior of as produced and foreign object damaged (FOD) solution heat treated and aged 7075 aluminum alloy was studied. Coated and uncoated samples were tested under rotating bending to determine the fatigue strengths between 104 and 106 cycles in both damaged and smooth condition. FOD was produced with single shots of small hard steel spheres impacting at 100 m/s in the minimum cross section. SEM was used to characterize the features of the fracture surfaces
    corecore