231 research outputs found

    Controlling the Manifold of Polariton States Through Molecular Disorder

    Full text link
    Exciton polaritons, arising from the interaction of electronic transitions with confined electromagnetic fields, have emerged as a powerful tool to manipulate the properties of organic materials. However, standard experimental and theoretical approaches overlook the significant energetic disorder present in most materials now studied. Using the conjugated polymer P3HT as a model platform, we systematically tune the degree of energetic disorder and observe a corresponding redistribution of photonic character within the polariton manifold. Based on these subtle spectral features, we develop a more generalized approach to describe strong light-matter coupling in disordered systems that captures the key spectroscopic observables and provides a description of the rich manifold of states intermediate between bright and dark. Applied to a wide range of organic systems, our method challenges prevailing notions about ultrastrong coupling and whether it can be achieved with broad, disordered absorbers

    Protektem pikinini blong yu trial: protocol for a single arm field trial to assess the effectiveness of treating-all pregnant women with hepatitis B infection with tenofovir prophylaxis to prevent mother-to-child transmission in Vanuatu, 2024–2025

    No full text
    Abstract Background Hepatitis B infection is a major public health concern in Vanuatu, with approximately 9% of the general population estimated to be living with chronic hepatitis B. Most new infections are due to mother-to-child transmission (MTCT). Hepatitis B vaccination is available in Vanuatu, but coverage rates for first dose within 24 h of birth and third dose are suboptimal. While treatment of chronic hepatitis B infection with tenofovir disoproxil fumarate (TDF) is available in country, there is no capacity to test hepatitis B e antigen and limited capacity to test hepatitis B virus (HBV) DNA viral load, which is a current eligibility requirement for women in pregnancy to access hepatitis B prophylaxis for MTCT per National guidelines. Recently, the World Health Organization guidelines have been updated to recommend universal peripartum antiviral prophylaxis (PAP) of pregnant women living with hepatitis B to prevent MTCT of HBV, without assessment of viral load in places without access to testing. However, these recommendations are conditional based on low-certainty evidence. The aim of this trial is to evaluate the effectiveness and safety of universal PAP and provide evidence for the global guidelines. Methods A single arm field trial compared to real world control sites will be conducted in Vanuatu involving pregnant women attending antenatal care services with positive HBsAg rapid tests. Participants at the control sites will undergo routine care. Participants at the intervention sites will all receive oral TDF prophylaxis from second trimester to completion of infant primary hepatitis B vaccination schedule. Primary data analysis will be by intention-to-treat. Initial analyses will be unadjusted comparisons of the intervention sites and control sites. Adjusted analyses will be performed, as needed, and presented in addition to unadjusted comparisons. Discussion This study will provide evidence of acceptability, effectiveness and cost-effectiveness of prophylaxis for all women with hepatitis B during pregnancy, as per the updated WHO guidelines, compared with current practice. The outcome of this trial will provide critical information to inform national and global guidelines around universal peripartum antiviral prophylaxis for hepatitis B during pregnancy. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR), ACTRN: ACTRN12623001202651p. Registered 21 November 2023

    Immunogenicity of concomitant SARS-CoV-2 and influenza vaccination in UK healthcare workers: a prospective longitudinal observational study

    No full text
    Background: Co-administration of inactivated influenza vaccine (IIV) and SARS-CoV-2 vaccine may impact SARS-CoV-2 vaccine induced humoral immune responses. We aimed to compare IIV and SARS-CoV-2 vaccine induced cellular and humoral immune responses in those receiving concomitant vaccination to those receiving these vaccines separately. Methods: We conducted a cohort study between 29th September 2021 and 5th August 2022 in healthcare workers who worked at the local NHS trust and in the surrounding area that were vaccinated with a mRNA SARS-CoV-2 booster and cell-based IIV. We measured haemagglutination inhibition assay (HAI) titres, SARS-CoV-2 anti-spike antibody and SARS-CoV-2 ELISpot count pre-vaccination, 1-month and 6-months post-vaccination and evaluated differences by vaccine strategy. Findings: We recruited 420 participants, 234/420 (56%) were vaccinated concomitantly and 186/420 (44%) separately. The 1-month post-vaccination mean fold rise (MFR) in SARS-CoV-2 anti-spike antibodies was lower in those vaccinated concomitantly compared to separately (MFR [95% confidence interval (CI)] 9.7 [8.3, 11.4] vs 12.8 [10.3, 15.9], p = 0.04). After adjustment for age and sex, the adjusted geometric mean ratio (aGMR) remained lower for those vaccinated concomitantly compared to separately (aGMR [95% CI] 0.80 [0.70, 0.92], p = 0.001). At 6-months post-vaccination, we found no statistically significant difference in SARS-CoV-2 anti-spike antibody titres (aGMR [95% CI] 1.09 [0.87, 1.35], p = 0.45). We found no statistically significant correlation between vaccine strategy with SARS-CoV-2 ELISpot count and influenza HAI titres at 1-month and 6-months post-vaccination. Interpretation: Our study found that concomitant vaccination with SARS-CoV-2 and IIV has no statistically significant impacts on long-term immunogenicity. Further research is required to understand the underlying mechanisms and assess the clinical significance of reduced anti-spike antibodies in those vaccinated concomitantly. Funding: Research and Innovation (UKRI) through the COVID-19 National Core Studies Immunity (NCSi) programme (MC_PC_20060).</p

    Review of searches for vector-like quarks, vector-like leptons, and heavy neutral leptons in proton-proton collisions at s\sqrt{s} = 13 TeV at the CMS experiment

    No full text
    International audienceThe LHC has provided an unprecedented amount of proton-proton collision data, bringing forth exciting opportunities to address fundamental open questions in particle physics. These questions can potentially be answered by performing searches for very rare processes predicted by models that attempt to extend the standard model of particle physics. The data collected by the CMS experiment in 2015-2018 at a center-of-mass energy of 13 TeV help to test the standard model at the highest precision ever and potentially discover new physics. An interesting opportunity is presented by the possibility of new fermions with masses ranging from the MeV to the TeV scale. Such new particles appear in many possible extensions of the standard model and are well motivated theoretically. They may explain the appearance of three generations of leptons and quarks, the mass hierarchy across the generations, and the nonzero neutrino masses. In this report, the status of searches targeting vector-like quarks, vector-like leptons, and heavy neutral leptons at the CMS experiment is discussed. A complete overview of final states is provided together with their complementarity and partial combination. The discovery potential for several of these searches at the High-Luminosity LHC is also discussed

    Observation of the J/ψ\psi \to μ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe J/ψ\psi\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb1{-1}. Normalizing to the J/ψ\psi\toμ+μ\mu^+\mu^- decay mode leads to a branching fraction [10.12.7+3.3^{+3.3}_{-2.7} (stat) ±\pm 0.4 (syst) ]×\times 107^{-7}, a value that is consistent with the standard model prediction

    Observation of the J/ψ\psi\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe J/ψ\psi\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb1{-1}. Normalizing to the J/ψ\psi\toμ+μ\mu^+\mu^- decay mode leads to a branching fraction [10.12.7+3.3^{+3.3}_{-2.7} (stat) ±\pm 0.4 (syst) ]×\times 107^{-7}, a value that is consistent with the standard model prediction

    Search for heavy neutral Higgs bosons A and H in the tt {\mathrm{t}\overline{\mathrm{t}}} Z channel in proton-proton collisions at 13 TeV

    No full text
    A direct search for new heavy neutral Higgs bosons A and H in the ttZ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z} channel is presented, targeting the process ppAZH \mathrm{p}\mathrm{p}\to\mathrm{A}\to\mathrm{Z}\mathrm{H} with Htt \mathrm{H}\to{\mathrm{t}\overline{\mathrm{t}}} . For the first time, the channel with decays of the Z boson to muons or electrons in association with all-hadronic decays of the tt \mathrm{t} \overline{\mathrm{t}} system is targeted. The analysis uses proton-proton collision data collected at the CERN LHC with the CMS experiment at s= \sqrt{s}= 13 TeV, which correspond to an integrated luminosity of 138 fb1 ^{-1} . No signal is observed. Upper limits on the product of the cross section and branching fractions are derived for narrow resonances A and H with masses up to 2100 and 2000 GeV, respectively, assuming A boson production through gluon fusion. The results are also interpreted within two-Higgs-doublet models, complementing and substantially extending the reach of previous searches.A direct search for new heavy neutral Higgs bosons A and H in the ttˉ\mathrm{t\bar{t}}Z channel is presented, targeting the process pp \to A \to ZH with H \tottˉ\mathrm{t\bar{t}}. For the first time, the channel with decays of the Z boson to muons or electrons in association with all-hadronic decays of the ttˉ\mathrm{t\bar{t}} system is targeted. The analysis uses proton-proton collision data collected at the CERN LHC with the CMS experiment at s\sqrt{s} = 13 TeV, which correspond to an integrated luminosity of 138 fb1^{-1}. No signal is observed. Upper limits on the product of the cross section and branching fractions are derived for narrow resonances A and H with masses up to 2100 and 2000 GeV, respectively, assuming A boson production through gluon fusion. The results are also interpreted within two-Higgs-doublet models, complementing and substantially extending the reach of previous searches

    Review of searches for vector-like quarks, vector-like leptons, and heavy neutral leptons in proton-proton collisions at s\sqrt{s} = 13 TeV at the CMS experiment

    No full text
    International audienceThe LHC has provided an unprecedented amount of proton-proton collision data, bringing forth exciting opportunities to address fundamental open questions in particle physics. These questions can potentially be answered by performing searches for very rare processes predicted by models that attempt to extend the standard model of particle physics. The data collected by the CMS experiment in 2015-2018 at a center-of-mass energy of 13 TeV help to test the standard model at the highest precision ever and potentially discover new physics. An interesting opportunity is presented by the possibility of new fermions with masses ranging from the MeV to the TeV scale. Such new particles appear in many possible extensions of the standard model and are well motivated theoretically. They may explain the appearance of three generations of leptons and quarks, the mass hierarchy across the generations, and the nonzero neutrino masses. In this report, the status of searches targeting vector-like quarks, vector-like leptons, and heavy neutral leptons at the CMS experiment is discussed. A complete overview of final states is provided together with their complementarity and partial combination. The discovery potential for several of these searches at the High-Luminosity LHC is also discussed

    Observation of the J/ψμ+μμ+μ {\mathrm{J}/\psi} \to\mu^{+}\mu^{-}\mu^{+}\mu^{-} decay in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    The J/ψμ+μμ+μ {\mathrm{J}/\psi} \to\mu^{+}\mu^{-}\mu^{+}\mu^{-} decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb1 ^{-1} . Normalizing to the J/ψμ+μ {\mathrm{J}/\psi} \to\mu^{+}\mu^{-} decay mode leads to a branching fraction of [ [ 10.1 2.7+3.3 ^{+3.3}_{-2.7} (stat) ±\pm 0.4 (syst) ]×] \times 107^{-7}, a value that is consistent with the standard model prediction.The J/ψ→μ+μ-μ+μ- decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6  fb-1. Normalizing to the J/ψ→μ+μ- decay mode leads to a branching fraction of [10.1-2.7+3.3(stat)±0.4(syst)]×10-7, a value that is consistent with the standard model prediction.The J/ψ\psi\toμ+μμ+μ\mu^+\mu^-\mu^+\mu^- decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of 33.6 fb1^{-1}. Normalizing to the J/ψ\psi\toμ+μ\mu^+\mu^- decay mode leads to a branching fraction [10.1 2.7+3.3^{+3.3}_{-2.7} (stat) ±\pm 0.4 (syst)] ×\times 107^{-7}, a value that is consistent with the standard model prediction
    corecore