138 research outputs found

    Polarization of the \lya Halos Around Sources Before Cosmological Reionization

    Full text link
    In Loeb & Rybicki (1999; paper I) it was shown that before reionization, the scattering of \lya photons from a cosmological source might lead to a fairly compact (15\sim 15'') \lya halo around the source. Observations of such halos could constrain the properties of the neutral intergalactic medium (IGM), and in particular yield the cosmological density parameters of baryons and matter on scales where the Hubble flow is unperturbed. Paper I did not treat the polarization of this scattered radiation, but did suggest that the degree of such polarization might be large. In this Letter we report on improved calculations for these \lya halos, now accounting for the polarization of the radiation field. The polarization is linear and is oriented tangentially to the projected displacement from the center of the source. The degree of polarization is found to be 14% at the core radius, where the intensity has fallen to half of the central value. It rises to 32% and 45% at the radii where the intensity has fallen to one-tenth and one-hundreth of the central intensity, respectively. At larger radii the degree of polarization rises further, asymptotically to 60%. Such high values of polarization should be easily observable and provide a clear signature of the phenomenon of \lya halos surrounding sources prior to reionization.Comment: 8 pages, 2 Postscript figures, accepted by Astrophysical Journal Letters; some typos corrected; added two paragraphs at the end of section 3 concerning detectability of Lyman alpha halo

    The Time Development of a Resonance Line in the Expanding Universe

    Full text link
    The time-dependent spectral profile of a resonance line in a homogeneous expanding medium is studied by numerically solving an improved Fokker-Planck diffusion equation. The solutions are used to determine the time required to reach a quasi-static solution near the line center. A simple scaling law for this relaxation time is derived and is fitted to the numerical results. The results are applied to the case of Lyman alpha scattering during primordial recombination of hydrogen. For a wide range of cosmological models it is found that the relaxation times are smaller than the recombination timescale, although not by a very large factor. Thus the standard assumption of a quasi-static solution in cosmological recombination calculations is reasonably valid, and should not cause substantial errors in the solutions.Comment: 20 pages text and 10 figures, in 30 pages of uuencoded, compressed postscript. CFA preprint no. 375

    Magnification Ratio of the Fluctuating Light in Gravitational Lens 0957+561

    Full text link
    Radio observations establish the B/A magnification ratio of gravitational lens 0957+561 at about 0.75. Yet, for more than 15 years, the optical magnfication ratio has been between 0.9 and 1.12. The accepted explanation is microlensing of the optical source. However, this explanation is mildly discordant with (i) the relative constancy of the optical ratio, and (ii) recent data indicating possible non-achromaticity in the ratio. To study these issues, we develop a statistical formalism for separately measuring, in a unified manner, the magnification ratio of the fluctuating and constant parts of the light curve. Applying the formalism to the published data of Kundi\'c et al. (1997), we find that the magnification ratios of fluctuating parts in both the g and r colors agrees with the magnification ratio of the constant part in g-band, and tends to disagree with the r-band value. One explanation could be about 0.1 mag of consistently unsubtracted r light from the lensing galaxy G1, which seems unlikely. Another could be that 0957+561 is approaching a caustic in the microlensing pattern.Comment: 12 pages including 1 PostScript figur

    Scattered Lyman-alpha Radiation Around Sources Before Cosmological Reionization

    Full text link
    The spectra of the first galaxies and quasars in the Universe should be strongly absorbed shortward of their rest-frame Lyman-alpha wavelength by neutral hydrogen (HI) in the intervening intergalactic medium. However, the Lyman-alpha line photons emitted by these sources are not eliminated but rather scatter until they redshift out of resonance and escape due to the Hubble expansion of the surrounding intergalactic HI. We calculate the resulting brightness distribution and the spectral shape of the diffuse Lyman-alpha line emission around high redshift sources, before the intergalactic medium was reionized. Typically, the Lyman-alpha photons emitted by a source at z=10 scatter over a characteristic angular radius of order 15 arcseconds around the source and compose a line which is broadened and redshifted by about a thousand km/s relative to the source. The scattered photons are highly polarized. Detection of the diffuse Lyman-alpha halos around high redshift sources would provide a unique tool for probing the neutral intergalactic medium before the epoch of reionization. On sufficiently large scales where the Hubble flow is smooth and the gas is neutral, the Lyman-alpha brightness distribution can be used to determine the cosmological mass densities of baryons and matter.Comment: 21 pages, 5 Postscript figures, accepted by ApJ; figures 1--3 corrected; new section added on the detectability of Lyman alpha halos; conclusions update

    A New Kinetic Equation for Compton Scattering

    Get PDF
    A kinetic equation for Compton scattering is given that differs from the Kompaneets equation in several significant ways. By using an inverse differential operator this equation allows treatment of problems for which the radiation field varies rapidly on the scale of the width of the Compton kernel. This inverse operator method describes, among other effects, the thermal Doppler broadening of spectral lines and continuum edges, and automatically incorporates the process of Compton heating/cooling. It is well adapted for inclusion into a numerical iterative solution of radiative transfer problems. The equivalent kernel of the new method is shown to be a positive function and with reasonable accuracy near the intitial frequency, unlike the Kompaneets kernel, which is singular and not wholly positive. It is shown that iterates of the inverse operator kernel can be easily calculated numerically, and a simple summation formula over these iterates is derived that can be efficiently used to compute Comptonized spectra. It is shown that the new method can be used for initial value and other problems with no more numerical effort than the Kompaneets equation, and that it more correctly describes the solution over times comparable to the mean scattering time.Comment: 27 pages, 5 figures, to be published in ApJ. Minor changes, including one reference correcte

    Properties of High-Redshift Lyman Alpha Clouds I. Statistical Analysis of the SSG Quasars

    Get PDF
    Techniques for the statistical analysis of the \Lya\ forest in high redshift quasars are developed, and applied to the low resolution (25 \AA) spectra of 29 of the 33 quasars in the Schneider-Schmidt-Gunn (SSG) sample.We find that the mean absorption increases with zz approximately as a power law (1+z)γ+1(1+z)^{\gamma+1} with γ=2.46±0.37\gamma = 2.46\pm 0.37. The mean ratio of \Lya\ to Lyman β\beta absorption in the clouds is 0.476±0.0540.476\pm 0.054. We also detect, and obtain ratios, for Lyman β\beta, γ\gamma, and possibly ϵ\epsilon. We are also able to quantify the fluctuations of the absorption around its mean, and find that these are comparable to, or perhaps slightly larger than, that expected from an uncorrelated distribution of clouds. The techniques in this paper, which include the use of bootstrap resampling of the quasar sample to obtain estimated errors and error covariances, and a mathematical treatment of absorption from a (possibly non-uniform) stochastic distribution of lines, should be applicable to future, more extensive, data sets.Comment: 29 pages, LaTeX using aastex30 macros, forthcoming as CfA preprin

    Thermal X-rays from Millisecond Pulsars: Constraining the Fundamental Properties of Neutron Stars

    Full text link
    Abridged) We model the X-ray properties of millisecond pulsars (MSPs) by considering hot spot emission from a weakly magnetized rotating neutron star (NS) covered by an optically-thick hydrogen atmosphere. We investigate the limitations of using the thermal X-ray pulse profiles of MSPs to constrain the mass-to-radius (M/RM/R) ratio of the underlying NS. The accuracy is strongly dependent on the viewing angle and magnetic inclination. For certain systems, the accuracy is ultimately limited only by photon statistics implying that future X-ray observatories could, in principle, achieve constraints on M/RM/R and hence the NS equation of state to better than \sim5%. We demonstrate that valuable information regarding the basic properties of the NS can be extracted even from X-ray data of fairly limited photon statistics through modeling of archival spectroscopic and timing observations of the nearby isolated PSRs J0030+0451 and J2124--3358. The X-ray emission from these pulsars is consistent with the presence of a hydrogen atmosphere and a dipolar magnetic field configuration, in agreement with previous findings for PSR J0437--4715. For both MSPs, the favorable geometry allows us to place interesting limits on the allowed M/RM/R of NSs. Assuming 1.4 M_{\odot}, the stellar radius is constrained to be R>9.4R > 9.4 km and R>7.8R > 7.8 km (68% confidence) for PSRs J0030+0451 and J2124--3358, respectively. We explore the prospects of using future observatories such as \textit{Constellation-X} and \textit{XEUS} to conduct blind X-ray timing searches for MSPs not detectable at radio wavelengths due to unfavorable viewing geometry. Using the observational constraints on the pulsar obliquities we are also able to place strong constraints on the magnetic field evolution model proposed by Ruderman.Comment: 9 pages, 7 figures, published in the Astrophysical Journal (Volume 689, Issue 1, pp. 407-415
    corecore