812 research outputs found

    A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things?

    Get PDF
    he potential role of bottom-up Synthetic Cells (SCs) in the Internet of Bio-Nano Things (IoBNT) is discussed. In particular, this perspective paper focuses on the growing interest in networks of biological and/or artificial objects at the micro- and nanoscale (cells and subcellular parts, microelectrodes, microvessels, etc.), whereby communication takes place in an unconventional manner, i.e., via chemical signaling. The resulting “molecular communication” (MC) scenario paves the way to the development of innovative technologies that have the potential to impact biotechnology, nanomedicine, and related fields. The scenario that relies on the interconnection of natural and artificial entities is briefly introduced, highlighting how Synthetic Biology (SB) plays a central role. SB allows the construction of various types of SCs that can be designed, tailored, and programmed according to specific predefined requirements. In particular, “bottom-up” SCs are briefly described by commenting on the principles of their design and fabrication and their features (in particular, the capacity to exchange chemicals with other SCs or with natural biological cells). Although bottom-up SCs still have low complexity and thus basic functionalities, here, we introduce their potential role in the IoBNT. This perspective paper aims to stimulate interest in and discussion on the presented topics. The article also includes commentaries on MC, semantic information, minimal cognition, wetware neuromorphic engineering, and chemical social robotics, with the specific potential they can bring to the IoBNT

    Molecular characterization of ‘Candidatus Phytoplasma prunorum’ in Cacopsilla pruni insect vector

    Get PDF
    Recent investigations on molecular characterization of the ‘Candidatus Phytoplasma prunorum’ (16SrX-B subgroup), causal agent of the European Stone Fruit Yellows (ESFY) syndrome, on the non ribosomal tuf gene resulted in the finding of two groups of isolates, named ‘type a’ and ‘type b’, both with a distinctive geographical distribution in Italian stone fruit growing areas (Ferretti et al., 2007 and 2008). Considering the role of Cacopsylla pruni (Scopoli) in the epidemiological cycle of the disease, the presence of the two groups of isolates has also been investigated in infected psyllid individuals from different Italian areas. Both types have been identified in C. pruni specimens collected on apricot, plum and wild Prunus species, confirming the geographical distribution and the percentages of spread of the two isolates.Keywords: ESFY, phytoplasma, characterization, tuf gene, insect vecto

    Identification of Flavescence dorée-related phytoplasma infecting grapevines on the isle of Ischia (southern Italy)

    Get PDF
    Among the grapevine diseases, Flavescence dorée (FD) is considered to be one of the greatest threats for grapevine cultivation throughout Europe. In Italy, where several major outbreaks of FD have occurred in the past, the disease is still mainly restricted to the northern regions and is under mandatory regulation. In 2011 the disease was recorded for the first time in southern Italy, in several vineyards located on the isle of Ischia (Campania). In order to determine the FD-related phytoplasma infecting these grapevines, molecular investigations were carried out on grapevine samples collected from several FD infected vineyards. The 16S rDNA/spacer region and the FD9 non-ribosomal fragment (secY gene) were investigated using a PCR/RFLP based method; a nucleotide sequence analysis of the FD9 amplified fragments was also carried out. The RFLP profiles obtained from all the analyzed samples showed the presence of FD-D phytoplasma type, on both 16S and secY genomic regions. Sequencing of the FD9 fragments showed a 99 % nucleotide sequence identity among the tested isolates and the various FD-D strains retrieved from the NCBI database.

    Platelet lysate maintains chondrogenic potential and promotes cartilage regeneration

    Get PDF
    cartilage. We report the biological effect of the platelet lysate (PL), a PRP derivative, on primary human articular chondrocytes (HAC) cultured under both physiological and inflammatory condition. Added to the culture medium, PL induced a strong mitogenic response in the chondrocytes. The in vitro expanded cell population maintained a chondrogenic re-­‐differentiation potential as revealed by micromass culture in vitro as well as in vivo as demonstrated by ectopic cartilage formation in nude mice. Furthermore, in chondrocytes cultured in the presence of the pro-­‐inflammatory cytokine IL-­‐1α, the PL induced a drastic enhancement of the synthesis of the cytokines IL-­‐6 and IL-­‐8 and of NGAL, a lipocalin expressed in cells of the chondrogenic lineage. These events were controlled by the p38 MAP kinase and NF-­‐ÎșΒ pathways. The pro-­‐inflammatory effect of the PL was a transient phenomenon. In fact, after an initial up regulation, we observed a significant reduction of the NF-­‐ÎșΒ activity together with the repression of the inflammatory enzyme ciclooxygenase-­‐2 (COX-­‐2). Moreover, the medium of chondrocytes cultured in the contemporary presence of PL and IL-­‐1α, showed a significant enhancement of the chemoattractant activity versus untreated chondrocytes. On the whole, our findings support the concept that the platelet products have a direct beneficial effect on articular chondrocytes and at the same time could drive in sequence a trans

    Titanium-Based Tetrakis-2,3-[5,6-di(Substituted)pyrazino]porphyrazine: Synthesis and Characterization

    Get PDF
    Tetrapyrazinoporphyrazine (TPysPz) ligands and metal complexes find, generally, application as electronic materials and catalysts. Considering the limited application of Titanium (Ti), we prepared and characterized a family of ligands and Ti-based complexes of tetrakis-2,3-[5,6-di-R8-pyrazino]porphyrazine (R = H, 2-Py, Ph). UV/Vis measurements in different solvents confirm molecular aggregation, which results more pronounced in the presence of 2-pyridil and phenyl substituents on the macrocycle edge. Because of low solubility, solid state NMR was applied for structure characterization. Additional IR and MALDI-TOF were carried out to complete the characterization. Cyclic voltammetry in DMSO/Bu4NBF4 0.1 m unveiled that our Ti complexes can take part in up to five redox events. The first two quasi-reversible reductions involve Ti(IV), whereas the further to or three occur at the expense of the TPysPz macrocycle. To test the applicability of our compounds as catalytic materials, we performed a preliminary cyclic voltammetry investigation in the solid-state, which showed typical peaks of hydrogen redox reactions

    Towards ecological flows: status of the benthic macroinvertebrate community during summer low-flow periods in a regulated lowland river

    Get PDF
    Climate change along with the increasing exploitation of water resources exacerbates low-flow periods, causing detrimental effects on riverine communities. The main mitigation measure currently adopted to counteract hydrological alterations induced by off-stream diversion is the release of minimum flows (MFs), even if within the European Union Water Framework Directive an upgrade towards ecological flows is urgently required to achieve good ecological status (GES). In this study, we investigated the temporal evolution of the benthic macroinvertebrate community in an Italian regulated lowland river (Ticino River) to clarify the ecological effects of summer low flows, and we evaluated the current MFs in the perspective of meeting GES standard. Biomonitoring was carried out for four consecutive years (2019-2022), in a river site immediately below a large off-stream diversion. The four study years were characterized by different streamflow patterns, thus allowing us to compare the temporal trajectories of the community under different flow conditions. Moreover, the interruption of the low-flow periods due to overflow spilled by the upstream dam gave us the opportunity to assess the effects of experimental flow peaks. Contrary to the expectation, the macroinvertebrate assemblage kept almost unvaried across the years, showing great resistance and resilience to hydrological changes. Even in extraordinarily dry 2022, the community composition varied only slightly, with a reduction of mayflies and an increase of mollusks. However, a deterioration of the ecological status below GES standard was recorded that summer, indicating the need for an upgrading of the current MFs. This upgrade would include experimental flow peaks in critical periods, which act as intermediate disturbances, enhancing community richness, diversity, and overall quality, as well as compliance with a threshold of an index specifically developed for the hydrological pressure

    The Effect of Visual Experience on the Development of Functional Architecture in hMT+

    Get PDF
    We investigated whether the visual hMT+ cortex plays a role in supramodal representation of sensory flow, not mediated by visual mental imagery. We used functional magnetic resonance imaging to measure neural activity in sighted and congenitally blind individuals during passive perception of optic and tactile flows. Visual motion-responsive cortex, including hMT+, was identified in the lateral occipital and inferior temporal cortices of the sighted subjects by response to optic flow. Tactile flow perception in sighted subjects activated the more anterior part of these cortical regions but deactivated the more posterior part. By contrast, perception of tactile flow in blind subjects activated the full extent, including the more posterior part. These results demonstrate that activation of hMT+ and surrounding cortex by tactile flow is not mediated by visual mental imagery and that the functional organization of hMT+ can develop to subserve tactile flow perception in the absence of any visual experience. Moreover, visual experience leads to a segregation of the motion-responsive occipitotemporal cortex into an anterior subregion involved in the representation of both optic and tactile flows and a posterior subregion that processes optic flow only