131 research outputs found

    Integrating planar circuits with superconducting 3D microwave cavities using tunable low-loss couplers

    Full text link
    We design and test a low-loss interface between superconducting 3-dimensional microwave cavities and 2-dimensional circuits, where the coupling rate is highly tunable. This interface seamlessly integrates a magnetic antenna and a Josephson junction based coupling element with a cavity, and we demonstrate that the introduced loss from this integration only limits the quality factor to 4.5 million. The cavity external coupling rate can then be tuned from negligibly small to over 3 orders of magnitude larger than the internal loss rate with a characteristic time of 3.2 ns. This switching speed does not impose additional limits on the coupling rate because it is much faster than the coupling rate. Moreover, the coupler can be controlled by baseband signals to avoid interference with microwave signals near the cavity or qubit frequencies. Finally, the coupling element introduces a 0.04 Hz/photon self-Kerr nonlinearity to the cavity, remaining linear in high photon number operations

    Corrugated Silicon Platelet Feed Horn Array for CMB Polarimetry at 150 GHz

    Full text link
    Next generation cosmic microwave background (CMB) polarization anisotropy measurements will feature focal plane arrays with more than 600 millimeter-wave detectors. We make use of high-resolution photolithography and wafer-scale etch tools to build planar arrays of corrugated platelet feeds in silicon with highly symmetric beams, low cross-polarization and low side lobes. A compact Au-plated corrugated Si feed designed for 150 GHz operation exhibited performance equivalent to that of electroformed feeds: ~-0.2 dB insertion loss, <-20 dB return loss from 120 GHz to 170 GHz, <-25 dB side lobes and <-23 dB cross-polarization. We are currently fabricating a 50 mm diameter array with 84 horns consisting of 33 Si platelets as a prototype for the SPTpol and ACTpol telescopes. Our fabrication facilities permit arrays up to 150 mm in diameter.Comment: 12 pages; SPIE proceedings for Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (Conference 7741, June 2010, San Diego, CA, USA

    Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors

    Get PDF
    We demonstrate photon-noise limited performance at sub-millimeter wavelengths in feedhorn-coupled, microwave kinetic inductance detectors (MKIDs) made of a TiN/Ti/TiN trilayer superconducting film, tuned to have a transition temperature of 1.4~K. Micro-machining of the silicon-on-insulator wafer backside creates a quarter-wavelength backshort optimized for efficient coupling at 250~\micron. Using frequency read out and when viewing a variable temperature blackbody source, we measure device noise consistent with photon noise when the incident optical power is >>~0.5~pW, corresponding to noise equivalent powers >>~3×1017\times 10^{-17} W/Hz\sqrt{\mathrm{Hz}}. This sensitivity makes these devices suitable for broadband photometric applications at these wavelengths

    Prototype finline-coupled TES bolometers for CLOVER

    Full text link
    CLOVER is an experiment which aims to detect the signature of gravitational waves from inflation by measuring the B-mode polarization of the cosmic microwave background. CLOVER consists of three telescopes operating at 97, 150, and 220 GHz. The 97-GHz telescope has 160 feedhorns in its focal plane while the 150 and 220-GHz telescopes have 256 horns each. The horns are arranged in a hexagonal array and feed a polarimeter which uses finline-coupled TES bolometers as detectors. To detect the two polarizations the 97-GHz telescope has 320 detectors while the 150 and 220-GHz telescopes have 512 detectors each. To achieve the target NEPs (1.5, 2.5, and 4.5x10^-17 W/rtHz) the detectors are cooled to 100 mK for the 97 and 150-GHz polarimeters and 230 mK for the 220-GHz polarimeter. Each detector is fabricated as a single chip to ensure a 100% operational focal plane. The detectors are contained in linear modules made of copper which form split-block waveguides. The detector modules contain 16 or 20 detectors each for compatibility with the hexagonal arrays of horns in the telescopes' focal planes. Each detector module contains a time-division SQUID multiplexer to read out the detectors. Further amplification of the multiplexed signals is provided by SQUID series arrays. The first prototype detectors for CLOVER operate with a bath temperature of 230 mK and are used to validate the detector design as well as the polarimeter technology. We describe the design of the CLOVER detectors, detector blocks, and readout, and present preliminary measurements of the prototype detectors performance.Comment: 4 pages, 6 figures; to appear in the Proceedings of the 17th International Symposium on Space Terahertz Technology, held 10-12 May 2006 in Pari
    corecore