105 research outputs found
DESQ: Frequent Sequence Mining with Subsequence Constraints
Frequent sequence mining methods often make use of constraints to control
which subsequences should be mined. A variety of such subsequence constraints
has been studied in the literature, including length, gap, span,
regular-expression, and hierarchy constraints. In this paper, we show that many
subsequence constraints---including and beyond those considered in the
literature---can be unified in a single framework. A unified treatment allows
researchers to study jointly many types of subsequence constraints (instead of
each one individually) and helps to improve usability of pattern mining systems
for practitioners. In more detail, we propose a set of simple and intuitive
"pattern expressions" to describe subsequence constraints and explore
algorithms for efficiently mining frequent subsequences under such general
constraints. Our algorithms translate pattern expressions to compressed finite
state transducers, which we use as computational model, and simulate these
transducers in a way suitable for frequent sequence mining. Our experimental
study on real-world datasets indicates that our algorithms---although more
general---are competitive to existing state-of-the-art algorithms.Comment: Long version of the paper accepted at the IEEE ICDM 2016 conferenc
Sampling Algorithms for Evolving Datasets
Perhaps the most flexible synopsis of a database is a uniform random sample of the data; such samples are widely used to speed up the processing of analytic queries and data-mining tasks, to enhance query optimization, and to facilitate information integration. Most of the existing work on database sampling focuses on how to create or exploit a random sample of a static database, that is, a database that does not change over time. The assumption of a static database, however, severely limits the applicability of these techniques in practice, where data is often not static but continuously evolving. In order to maintain the statistical validity of the sample, any changes to the database have to be appropriately reflected in the sample. In this thesis, we study efficient methods for incrementally maintaining a uniform random sample of the items in a dataset in the presence of an arbitrary sequence of insertions, updates, and deletions. We consider instances of the maintenance problem that arise when sampling from an evolving set, from an evolving multiset, from the distinct items in an evolving multiset, or from a sliding window over a data stream. Our algorithms completely avoid any accesses to the base data and can be several orders of magnitude faster than algorithms that do rely on such expensive accesses. The improved efficiency of our algorithms comes at virtually no cost: the resulting samples are provably uniform and only a small amount of auxiliary information is associated with the sample. We show that the auxiliary information not only facilitates efficient maintenance, but it can also be exploited to derive unbiased, low-variance estimators for counts, sums, averages, and the number of distinct items in the underlying dataset. In addition to sample maintenance, we discuss methods that greatly improve the flexibility of random sampling from a system's point of view. More specifically, we initiate the study of algorithms that resize a random sample upwards or downwards. Our resizing algorithms can be exploited to dynamically control the size of the sample when the dataset grows or shrinks; they facilitate resource management and help to avoid under- or oversized samples. Furthermore, in large-scale databases with data being distributed across several remote locations, it is usually infeasible to reconstruct the entire dataset for the purpose of sampling. To address this problem, we provide efficient algorithms that directly combine the local samples maintained at each location into a sample of the global dataset. We also consider a more general problem, where the global dataset is defined as an arbitrary set or multiset expression involving the local datasets, and provide efficient solutions based on hashing
On Multi-Relational Link Prediction with Bilinear Models
We study bilinear embedding models for the task of multi-relational link
prediction and knowledge graph completion. Bilinear models belong to the most
basic models for this task, they are comparably efficient to train and use, and
they can provide good prediction performance. The main goal of this paper is to
explore the expressiveness of and the connections between various bilinear
models proposed in the literature. In particular, a substantial number of
models can be represented as bilinear models with certain additional
constraints enforced on the embeddings. We explore whether or not these
constraints lead to universal models, which can in principle represent every
set of relations, and whether or not there are subsumption relationships
between various models. We report results of an independent experimental study
that evaluates recent bilinear models in a common experimental setup. Finally,
we provide evidence that relation-level ensembles of multiple bilinear models
can achieve state-of-the art prediction performance
Exact and approximate maximum inner product search with LEMP
We study exact and approximate methods for maximum inner product search, a fundamental problem in a number of data mining and information retrieval tasks. We propose the LEMP framework, which supports both exact and approximate search with quality guarantees. At its heart, LEMP transforms a maximum inner product search problem over a large database of vectors into a number of smaller cosine similarity search problems. This transformation allows LEMP to prune large parts of the search space immediately and to select suitable search algorithms for each of the remaining problems individually. LEMP is able to leverage existing methods for cosine similarity search, but we also provide a number of novel search algorithms tailored to our setting. We conducted an extensive experimental study that provides insight into the performance of many state-of-the-art techniques—including LEMP—on multiple real-world datasets. We found that LEMP often was significantly faster or more accurate than alternative methods
Sampling time-based sliding windows in bounded space
Random sampling is an appealing approach to build synopses of large data streams because random samples can be used for a broad spectrum of analytical tasks. Users are often interested in analyzing only the most recent fraction of the data stream in order to avoid outdated results. In this paper, we focus on sampling schemes that sample from a sliding window over a recent time interval; such windows are a popular and highly comprehensible method to model recency. In this setting, the main challenge is to guarantee an upper bound on the space consumption of the sample while using the allotted space efficiently at the same time. The difficulty arises from the fact that the number of items in the window is unknown in advance and may vary significantly over time, so that the sampling fraction has to be adjusted dynamically. We consider uniform sampling schemes, which produce each sample of the same size with equal probability, and stratified sampling schemes, in which the window is divided into smaller strata and a uniform sample is maintained per stratum. For uniform sampling, we prove that it is impossible to guarantee a minimum sample size in bounded space. We then introduce a novel sampling scheme called bounded priority sampling (BPS), which requires only bounded space. We derive a lower bound on the expected sample size and show that BPS quickly adapts to changing data rates. For stratified sampling, we propose a merge-based stratification scheme (MBS), which maintains strata of approximately equal size. Compared to naive stratification, MBS has the advantage that the sample is evenly distributed across the window, so that no part of the window is over- or underrepresented. We conclude the paper with a feasibility study of our algorithms on large real-world datasets
A Benchmark for Semi-Inductive Link Prediction in Knowledge Graphs
Semi-inductive link prediction (LP) in knowledge graphs (KG) is the task of
predicting facts for new, previously unseen entities based on context
information. Although new entities can be integrated by retraining the model
from scratch in principle, such an approach is infeasible for large-scale KGs,
where retraining is expensive and new entities may arise frequently. In this
paper, we propose and describe a large-scale benchmark to evaluate
semi-inductive LP models. The benchmark is based on and extends Wikidata5M: It
provides transductive, k-shot, and 0-shot LP tasks, each varying the available
information from (i) only KG structure, to (ii) including textual mentions, and
(iii) detailed descriptions of the entities. We report on a small study of
recent approaches and found that semi-inductive LP performance is far from
transductive performance on long-tail entities throughout all experiments. The
benchmark provides a test bed for further research into integrating context and
textual information in semi-inductive LP models
Deferred Maintenance of Disk-Based Random Samples
Random sampling is a well-known technique for approximate processing of large datasets. We introduce a set of algorithms for incremental maintenance of large random samples on secondary storage. We show that the sample maintenance cost can be reduced by refreshing the sample in a deferred manner. We introduce a novel type of log file which follows the intuition that only a “sample” of the operations on the base data has to be considered to maintain a random sample in a statistically correct way. Additionally, we develop a deferred refresh algorithm which updates the sample by using fast sequential disk access only, and which does not require any main memory. We conducted an extensive set of experiments and found, that our algorithms reduce maintenance cost by several orders of magnitude
Dynamic Parameter Allocation in Parameter Servers
To keep up with increasing dataset sizes and model complexity, distributed
training has become a necessity for large machine learning tasks. Parameter
servers ease the implementation of distributed parameter management---a key
concern in distributed training---, but can induce severe communication
overhead. To reduce communication overhead, distributed machine learning
algorithms use techniques to increase parameter access locality (PAL),
achieving up to linear speed-ups. We found that existing parameter servers
provide only limited support for PAL techniques, however, and therefore prevent
efficient training. In this paper, we explore whether and to what extent PAL
techniques can be supported, and whether such support is beneficial. We propose
to integrate dynamic parameter allocation into parameter servers, describe an
efficient implementation of such a parameter server called Lapse, and
experimentally compare its performance to existing parameter servers across a
number of machine learning tasks. We found that Lapse provides near-linear
scaling and can be orders of magnitude faster than existing parameter servers
- …